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BLOCK   I:    

UNIT I - MARKOV CHAINS AND 
MARKOV PROCESSES 

1.1 Introduction  
1.2 Definition –Stochastic Processes 
1.3 Markov Chains 
1.4 Transition Probabilities – Order od Markov Chains 
1.5 Higher Transition Probabilities- Computations 

 

1.1              Introduction : 
 Dealing with uncertainty through random variable (discrete and 
continuous) is a tedious task for scientists since the 19�� century. For 
integral valued random variable s. It is often easy to apply powerful 
tools likegenerating functions end z- transforms. Instead of dealing 
with single random variable with correspondingprobability 
distribution(mass) function known, a family  of random variables 
varying with time t(n-diorite)are dame in stochastic process 
 Thus stochastic process is a family of random variables, which 
varies with inspect to time (the parameter) and take specific values in a 
setor space.Real time space may be either discrete or continuous. In the 
ensuring section, We elucidate the concept of Markov Chain and its 
transition matrix. We also discuss the order of the MC.  Higher order 
transition probabilities are also computed from Kolmogorov equation 
as well as transition probability matrix. 
Definition: 
 Let  { Xn,n ∈ T},Use stochastic process with state space 
E(discrete or continue) and time space T(discrete or continuous) 
 A thus a family of random variables { X t : t ∈ T} ,where T 
={.....-1,0,1,2.....} or (-∞, ∞) or its subsets, takes its values from the 
state space E which is a subsets of real or complex space . 
The collection of such processes consist of all kinds of stochastic 
processes that  can be classified in  to four different categories. 

1) Discrete time, Discrete state space. 
2) Discrete time, Continuous state space. 
3) Continuous time, Discrete state space. 
4) Continue time, Continuous state space 
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Example1. 

Let 	
 denote the number of sixes up to the ��� throw of an unbiased 
die (6 faces) continuously. Then, clearly,�	� ∶ � ≥ 0� is a stochasticprocess 
with time space T= {0, 1, 2 …..}, and state space E = {0, 1, 2 ……}. 

Example 2. 

 Consider the experiment of recording the temperature ata place at the 
end of every day. Let 	
 denote the temperature measure on the ��� day, then �	
 ∶ � ≥ 0� is a stochastic process with state space T = �−∞, ∞� (sometimes, 
the temp freezes below0� ) . 

Example (3) 

 Let	�denote the number of phone calls received at a telephone 
exchange board upto time t, That is the number of calls received during the 
interval [ 0, t ), starting with initial time point t = 0, Then clearly �	� ∶ � ∈ �� 
is a stochastic process with continuous time space� = [0, ∞� and discrete state 
space E = �0, 1, 2 … �. 
Example (4)  

 Consider the experiment of observing the price of gold in the whole 
sale market with initial time point t = 0. Let 	� denote the price of gold at time 
t (clock time). Then clearly �	�: � ∈ �� in a stochastic process with time space 
T=�0, ∞� and stole spec E =�0, ∞�. 

 All the above examples are taken from real life situation and the 
classification of stochastic process is vivid from these examples.Next we see 
some of the processes with special properties. 

1.2 Stochastic Processes – Independent increaments 

 Consider a stochastic process �	�: � ∈ �� with continuous time space T 
=�−∞, ∞�. If for all ��,  ��…..�
 ∈ ��� < �� <…….< �
. The random 

variables,X (��) – X� �� ), X� � ) − X ��� �…. , X� �
 ) – X��
!�� are 
independent then,�	�: � ∈ �� is said to be a stochastic process with 
independent increments. 

�	
 ∶ � ∈ "� 
            (1) 

�	
: � ∈ "� 
                 (2) �	�: � ∈ �� 

             (3) 
�	�: � ∈ �� 

                  (4) 
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 In the case of discrete parameter, �	
 ∶ � ∈ "� is a stochastic process, 
satisfying the Markovcondition. 

 Let #� = 	�,#$ = 	$ − 	$!�,i = 1, 2…… , where N = { 0, 1, 2…..} be 
independent random variables,  then �	�: � ∈ �� is the  Stochastic Process  
with independent increments. Then the sequence of independent random 
variables�#
: � ≥ 0� is a stochastic process with independent increments. 

 Let �	�: � ∈ �� be a stochastic process with time space T = �−∞, ∞�, 
and state space E = �−∞, ∞� ( continuous time, continuous state space) 

 If for a given value,	�%�, the value of 	��� , t >s, do not depend as the 

values 	�'�, u<s, then the process �	�: � ∈ �� is said to be a Markov Process. 

 In mathematical form( probability distribution), this Markov Process 
can be defined as follows: 

 Iffor��<��< ….. <�
< t, ()*+ ≤  	�  ≤  - | 	�/ = 0�,  	�1 = 02,….. ,	��= 0� =  

         ()*+ ≤  	�  ≤  - | 	�3 =  0
4, then the process �	�: � ∈ �� is called 

Markov Process. 

1.3. Markov Chains 

Markov Chain:    The discrete parameter Markov process �	
: � ∈ "� is 
known as Markov Chain with state space either discrete or continuous. 

 Consider a simple coin tossing experiment repeated for a number of 
times (costively), Twopossible outcomes for each trial are ‘Head’ and ‘Tail’. 
Assume that Head occurs with probability p and that Tail occurs with 
probability q, so that p + q = 1. 

 Let us denote the outcomes of the ��� toss of the unbiased coin by 	
 . 

Then   	
 = 51                               67  ℎ9:; <==>?@0  67 �:6A <==>?@, for n = 1,2,3, … .G 
That is  

 () � 	
 = 1 } = p, and ()  ℎ�	
 = 0} = q. Hence the sequence of random 
variables, 	�,	�……..,  

Cen be written as �	
: � ≥ 1�, which is a Markov chain. 
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Definition: 

 The stochastic process �	
 ∶ � = 0, 1, 2 … . � or �	
: � ∈ "�, where No 
= { 0, 1, 2….} 

is a Markov Chain if for i, j,  6�,6�,…… 6
!�  ∈ ",(or a subset of z). 

 () = �	
H� = I | 	
 = 6, 	
!� = 6
!�, … … 	� = 1, 	� = 6�� = ()�	
H� = I | 	
 = 6� = ($J 

whenever, the initial random variable 	� is defined. 

 Here 	
 =j means the outcome of the process in the ��� trial is j. 

Remark: 

 1. The transition probability K$J may or may not be independent of n. L69 K$J = K$J�
�. M. 

1.4.Transition Probabilities– Order of Markov Chains : 

Consider a M. C. �	
: � ≥ 0�, then the m−step transition probability denoted K$J�N� is defined as ($J�N� = �	
HN = I | 	
 = 6�. 
Transition Probability Matrix: 

 When m=1,the one step transition probabilities (K$J�, satisfies  K$J ≥ 0 

and  ∑ K$J = 1PJ!�  for all i = 0, 1,2,3,… 

 The transition  probabilities for  different state transitions  may be 
written inMatrix from as follows: 

   P =Q(�� (�� (�� − −(�� (�� (�� − −− −   −  −  −− − −     −  −R 

 This matrix P is called a transition probability matrix ( tpm ) of the 
Markov Chain �	
: � ≥ 0�. 
Example (5): 

 Consider a simple queuing system, before a counter designed for 
customer service. Customers arrive for service, to the counter (one server) who 
serves one customer at time epochs 0, 1, 2,… 
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 Let S
 denote the random variable, representing the number of 
customersarrive the counter during  the time interval ( n,n+1) for n = 0, 1, 2, 
….. 

 ClearlyS
, are independent and identically distributed random 
variables,  withprobability distribution () { S
 = n } = KT, k = 0, 1, 2, …… .  
Assume that the waiting room can accommodate only Mcustomers, including 
one in the counter. 

 Let 	
be the number of customers present at epoch n, including the 
one being served,if any, Then �	
: � ≥ 0�Is a Markov Chain with state space 
E = { 0, 1, 2, ……….,M }. 

Now we have, 

   	
H� = U S
  67 	
 = 0 :?9 0 ≤  S
 ≤ V	
 + S
  − 1 67      1 ≤ 	
  ≤ V :�; 0 ≤ S
 ≤ V + 1 − 	
V                                  <�ℎ9?X6@9.
G 

The corresponding tpm is denoted by 

 P = 

YZZ
ZZZ
[ \�\�\     −    −    \]!�\]!�^]\�\�\�     −     −    \]!�\]!�    ^]0     \�\�       −     −    \]!�\]^]!�−     −    −         −    −           −         −         −−      −     −        −      −         −            −         −0     0        −        −  −      \�\�^�0     0       −           −        −        0        \�^� _̀̀

`̀̀
a
 

where, ̂ ] = \] + \]H� + ……  and ̂ b = 1. 

Example6. 

 Consider a particle moving back and front, in random fashion ( random 
walk )along astraight line (lane) having absorbing barriers say 0 and 4. We 
describe its movement as follows: 

When the particle is at position state) r ( 0< r < 4 ), it moves to state (r +1) 
with probability K or to state( r-1) with probability \, where p + q =1. 

 But as soon as the particle reached 0 or 4 it remains there itself 
(absorbing). 

Example 7: 

 A particle performs a random walk with absorbing barriers, as 0 and 4. 
Whenever it is at any position r �0 < ? < 4�, it moves to r + 1 with probability 
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P or to �? − 1� with probability q, p + q =1. But as soon as it reaches 0 or 4 it 
remains there itself. Let 	
 be the position of the particle after n moves. The 
different states of 	
 are different positions of the particle. �	
� is a Markov 
chain whose unit – step transition probabilities are given by 

   Pr�	
H� = ? + 1 | 	
 = ?� = p 

   Pr �	
H� = ? − 1 | 	
 = ?� = q  0 < r < 4 

and   Pr �	
H� = 0 | 	
 = 0� = 1, 

   Pr �	
H� = 4 | 	
 = 4� = 1. 

The transition matrix is given by       States of 	
H� 

   States of 	


YZ
ZZ
ZZ
ZZ
[1     0     0     0     0 

\     0     K     0    0 
0    \     0     K     0 
0     0     \     0     K 
0     0     0     0     1 _̀

`̀
`̀
`̀
a
 

 

1.4.1.General random walk between two barriers: 

 Consider that a particle that may be at any one position r, r = 0, 1,…., k 
( ≥ 1 ) of the x – axis. From state r it moves to state r + 1, 1 ≤ r ≤ k – 1 with 
probability p and to state r – 1 with probability q. As soon as it reaches state 0 
it remains there with probability : and is reflected to state 1 with probability 1 − a ( 0 < a < 1); if it reaches the state k it remains there with probability b and 

is reflected to k – 1 with probability 1 – b ( 0 < b < 1 ) . Then,�	
�, where 	
 
is the position of the particle after n steps or moves, is Markov chain with state 
space S = { 0, 1,….k }. The transition matrix is 

   P =YZZ
Z[ :    1 − :    0   −     0    0     0\          0     −    −     0     0     0−      −     −     −   −    −    −0         0       0    −  \     0        K0        0        0   −    0  1 − d  d _̀̀

à
 

 If a = 1, then is an absorbing barrier and if a = 0, then is a reflecting 
barrier, if 0 < a < 1, 0 is an elastic barrier. Similar is the case with state k. The 
case when both 0 and k are absorbing barriers corresponds to the familiar 
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Gambler’s ruin problem ( with total capital between the two gamblers 
amounting to k). 

 Example  8: 

 Suppose that a coin with probability p for showing a head (success) is 
tossed indefinitely. Let 	
 denote the outcome of the ���trial, be k, where k ( 
= 0, 1,…n ) denote that there is a run of k successes, i. e. the length of the 
uninterrupted block of heads is k.  Clearly  { 	
, n ≥ 0 } constitutes a Markov 
Chain, with unit – step transition probabilities 

  (JT = Pr �	
H� = e | 	
 = I� = p, k = j + 1 

              = q,  k = 0 

              = 0, otherwise. 

The transition matrix is given by 

       States of 	
H� 

      0      1     2     …     k     k +1    … 

    States of 	


YZ
ZZZ
ZZZ
ZZZ
[ \    K      <    …      <     <        …\     <     K    …      <     <       …\     <     <    …     .       .         ….      .        .     …      .       .        ….      .        .     …       .      .        ….      .       . .     . . .        .      .         …\     <     <     …         <    K         . ..       .       .        . . .        .    .          . ..        .      .       …         .     .      …  

_̀
`̀̀
`̀̀
`̀̀
a

 

Example  9:Partial sum of independent random variables:  

 Consider a series coin tossing experiments, where the outcomes of ��� 
trial are denoted by 1 ( for a head ) and 0 ( for a tail ). Let 	
 be the random 
variable denoting the outcome of��� trial and f
 = 	� +….+ 	
 be the ��� 
partial sum. The possible values <7 f
 are 0, 1,…,n, i. e. the states of f
 are r, 
r = 0, 1,…. n, �f
, � ≥ 0� is a Markov chain with transition matrix as given 
below. 

 A Markov chain �	
, � ≥ 0� with k states, where k is finite, is said to 
a finite Markov chain. The transition probability matrix P is, in this case, a 
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square matrix with k - rows and k -columns. Examples7 and 8 deals  with 
finite Markov chains. 

     Transition matrix 

     States of f
H�  

  States of f


YZ
ZZ
ZZ
ZZ
ZZ
Z[ \    K      0    …      0     0        …0     \      K    …      0     0       …0     0     \    …       0    0        ….      .     .       …         .     .        ….      .      .       …       .      .        ….      .       . .     . .        .      .         …0     0     0     …         \     K      . . ..       .       .       . . .         .       .       . ..        .      .       …         .       .    … 

_̀
`̀
`̀
`̀
`̀
à

 

The number of states could however be infinite. When the possible values of 	
 form a denumerable set, then the Markov chain is said to be denumerably 
infinite or denumerable and the chain is said to have a countable state space. 
Examples 1 (d) ane of denumerable Markov chains. 

1.5HIGHER TRANSITION PROBABILITES 

1.5.1 Chapman – Kolmogorov equation: 

 We have so far considered unit – step or one – step transition 
probabilities, the probability of 	
 given  	
!�, i. e. the probability of the 
outcome at the nth step or trial given the outcome at the previous step; KJT 

gives the probability of unit – step transition from the state j at a trial to the 
state k at the next following trial. The m – step transition probability is 
denoted by 

    Pr �	NH
 = e | 	
 = I� =  KJT�N�; 
KJT�N� gives the probability that from the state j at nth trial, the k is reached at ( 

m + n )th trial in m steps, i. e. the probability of transition from the state j to 
the state  k  in exactly m steps. The number n does not occur in the r. h. s. of 
the relation and the chain is homogeneous. The one – step transition 

probabilities KJT��� are denoted by KJT for simplicity. Consider 

    KJT��� = Pr �	
H� = e | 	
 = I�. 
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 The state k can be reached   from the state j in two steps through some 
intermediate state   r. Consider a fixed value of r;  we have 

  Pr �	
H� = e, 	
H� = ? | 	
 = I� 
   = Pr �	
H� = e, 	
H� = ? | 	
 = I� Pr �	
H� =? | 	�=I 
  = K)T���KJ)��� = KJ)K)T. 

Since these intermediate state  r can assume values r = 1, 2, …., we have 

KJT��� = Pr �	
H� = e | 	
 = I� = ∑ (?) �	
H� = e, 	
H� = ? | 	
 = I� 
       = ∑ KJ)) KJT  

(summing over for all intermediate states). 

By induction, we have 

 KJT�NH�� = Pr �	
HNH� = e | 	
 = I� 
  = ∑ (?) �	
HNH� = e | 	
HN = ?� Pr �	
HN = ? | 	
 = I� 
  = ∑ (?) KJ)�N� . 
Similarly, we get 

 KJT�NH�� = ∑ KJ)) KJ)�N� . 
In general, we have 

 KJT�NH
� = ∑ K)T�
�) KJ)�N� = ∑ KJ)�
�) K)T�N� . 
       This  equation is a special case of Chapman – Kolmogorov equation, 
which is satisfied by the transition probabilities of a Markov chain. 

       From the above argument , we get 

 KJT�NH
� ≥ KJ)�N�K)T�
� , for any r.        ⃞ 
1.5.2 Remark:       We can put the results in terms of transition matrices as 
follows. Let P = �KJT� denote the transition matrix of the unit – step transition 

and (�N� = �KJT�N�� denote the m-step transition matrix.   For m = 2, we have 

the matrix (��� whose elements are given by. It follow that the elements of 
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(��� are the elements of the matrix obtained by multiplying the matrix P by 
itself, i. e. 

 (��� = (. ( = (�. 

Similarly,  

 (�NH�� = (�N�. P = P . (�N� 
and  (�NH
� = (�N� . (�
� = (�
� . (�N� . 
        It should be noted that there exist non – Markov chain whose transition 
probabilities satisfy Chapman – Kolmogorov equation ( example, see Feller I, 
p. 423, Parzen p. 203). 

Example  2. 

Consider the Markov chain of Example 1(g) . The two – step transition matrix 
is given by 

  YZZ
Z[    h �h      0 �h �� �h0      h �h _̀̀

à
YZZ
Z[    h �h      0 �h �� �h0      h �h _̀̀

à
    =    YZZ

Z[ i  j i�k ��ki�k ��  �k �k l�k �h _̀̀
à
 

Hence  K����� = Pr �	
H� = 1 | 	
 = 0� = 
i�k  for n ≥ 0 . 

Thus  Pr �	� = 1 | 	� = 0� = 
i�k , 

And  Pr �	� = 1 , 	� = 0� = Pr �	� = 1 | 	� = 0�  Pr �	� = 0� 
               =  m i�kn . m� n = 

ihj . 

Example 3. 

 Two – state Markov chain . Suppose that the probability of a dry day 

(state 0) following a rainy day (state 1) is 
�  and that the probability of a rainy 

day following a dry day is 
�� . We have a two – state Markov chain such that K�� = 

�  and  K�� = 
��  and t. p. m. 

    P =  o�� ��� � p 
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We have   (� = o i�� q��q�j ���jp . Kh = o�q h � �ilh ��ilkhj  jlkhjp 

 Given that 1 denote a dry day, the probability that May 3 is a dry day  is i��, and that May 5 is a dry is 
�q h � We can calculate the higher powers of P.  

Example  4. 

 Consider a communication system which transmits the digits 0 
and 1 through several stages. Let  	
, n ≥ 1 be the digit leaving the ��� stage 
of system and 	� be the digit entering the first stage (leaving the 0th stage). At 
each stage there is a constant probability q that the digit which enters will be 
transmitted unchanged ( i. e. the digit will remain unchanged when it leaves ), 
and probability p otherwise (i. e. the digit changes when it leaves), p +q = 1. 

 Here �	
, � ≥ 0� is a homogeneous two – state Markov chain 
unit – step transition matrix 

   P = r \     K K     \ s . 
 It can be shown (by mathematical induction or otherwise) that 

   KN = t�� +  �� �\ − K�N �� −  �� �\ − K�N
�� −  �� �\ − K�N �� +  �� �\ − K�Nu 

Here   K���N� = K���N� = 
�� +  �� �\ − K�N 

and   K���N� = K���N� = 
�� −  �� �\ − K�N . 

Also    as m → ∞, lim  K���N� = lim  K���N� =  lim  K���N� = lim  K���N� → �� . 

Suppose that the initial distribution is given by 

   Pr �	� = 0� and Pr �	� = 1� = b = 1 – a. 

Then we have 

   Pr �	N = 0, 	� = 0� = Pr �	N = 0 | 	� = 1� Pr �	� = 0� 
      = aK���N� 
and   Pr�	N = 0, 	� = 1�  = dK���N� . 
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                  The probability that the digit entering the first stage is 0 given that 
the digit leaving the mth stage is 0 can evaluated by applying Bayes’ rule. We 
have 

   Pr  �	� = 0 | 	N = 1�   

      = 
wx�yz{� | y|{�� wx�y|{��wx�yz{� | y|{�� wx�y|{��H wx�yz{� | y|{�� wx�y|{�� 

      = 
}~�||��z�

}~�||��z� H�~�|/��z�  

      = 
} �/1 H /1��!~�z�} �/1 H /1�� ! ~�z�H� �/1 ! /1�� ! ~�z� 

      = 
} ��H � � ! ~ �z��H �} ! ���� ! ��z . 

1.5.3 Probability distribution- definition 

      Probability distribution of random variables involved in a markov chain 
can be studied in this section.The joint distribution of consecutive random 
variables can be found using the following techniques: 
It may be seen that the probability distribution of Random variables 	) ,	)H�,……, 	)H
 can be computed in terms of the transition probabilities KJT 

and the initial distribution of 	), is known .Suppose, for simplicity, take r = 0, 
then 

 Pr�	� = :,  	� = d, … ., 	
!� = I,  	
 = e� 
 = Pr �	
 = e | 	
!� = I, … ., 	b = :� Pr �	
!� = I, … ., 	b = :� 
 = Pr �	
 = e | 	
!� = I� Pr �	
 = I | 	
!� = 6� Pr �	
!� = 6, … .,  	<=:  

 = Pr �	
 = e | 	
!� = I�  Pr �	
 = I | 	
!� = 6� …. Pr �	� =d | 	0=: Pr 	0=: 

 = � (?�	� = :��K}� …. K$JKJT, 

Thus, 

 Pr�	) = :,  	)H� = d, … ., 	)H
!� = 6,  	)H
!� = I, 	)H
{T� 
 = � (? �	) = :��K}� …. K$JKJT, 

Example 1: 
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 Let �	
, � ≥ 0� be a Markov chain with three states 0, 1, 2 and with 
transition matrix 

          

      YZZ
Z[    h �h      0 �h �� �h0     h �h _̀̀

à
, and the initial 

distribution Pr �	� = 6� =  
�  , I = 0, 1, 2. 

we have                            Pr �	� = 1 | 	� = 2� =  
 h 

                                               Pr �	� = 2 | 	� = 1� =  
�h 

 Pr �	� = 2 |	� = 1 |	� = 2� 
    = Pr  �	� = 2 | 	� = 1� Pr �	� = 1 | 	� = 2� = �h . 

 h = 
 �k 

       Pr �	� = 2 , 	� = 1, 	� = 2� 
    = Pr �	� = 2 , 	� = 1 | 	� = 2� Pr �	� = 2� =  �k . 

�  = 
��k 

      Pr �	 = 1 , 	� = 2, 	� = 1, 	� = 2� 
    = Pr �	 = 1 | 	� = 2, 	� = 1, 	� = 2� × Pr �	� = 2, 	� = 1,  	� = 2� 
    = Pr �	 = 1 | 	� = 2� m ��kn =  

 h . 
��k = 

 kh. 

1.5.4.Remark 

 The matrix of transition probabilities together with initial distribution , 
completely specifies a Markov Chain �	
: � = 0, 1, 2, … �. 
 We state (without proof) the general existence theorem of Markov 
chains. 

 Given the state space  E and the sequence of stochastic matrices 

(KJT�
�)= (�
�,there exist a MarkovChain �	
, � ≥ 0� with state space E and 

transition probability matrix, (�
�. (For proof, see Iosifescu & Tautu, 
Stochastic Processes – I, Springer – Verlag (1973), Chung (1967)).
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UNIT II 

 CLASSIFICATION OF STATES OF 
STATES AND CHAINS 

2.1 Classification of States 

2.2. Markov Chains with denumerable number of states 

2.3 Reducible Chains 

2.1. Classification of states: 

The states j, j = 0, 1, 2, …. Of a Markov chain �	
, � ≥ 0� can often be 
classified in a distinctive manner according to some fundamental properties of 
the system. By means of such classification it is possible to identify certain 
types of chains. 

Communication Relations 

 If K$J�
�> 0 for some n ≥ 1, then we say that state j can be reached 

or state j is accessible from state I; the relation is denoted by 1 →  j . 

Conversely, if for all n, K$J�
� = 0, then j is not accessible from I; in notation I ↛ 

j. 

 If two states I and j are such that each is accessible from the 
other then we say that the two states communicate; it is denoted by I ⟷ j ; 
then there exist integer m and n such that 

   K$J�
�> 0 and K$J�N�> 0 . 

The relation → is transitive, i. e. if  i → j and j → k then i → k. From Chapman 
– Kolmogorov equation  

   K$T�NH
� = ∑ K$)�N�) K)T�
� 
   K$T�NH
� ≥ K$J�N�KJT�
� 
where the transitivity property follows. 

            The relation ⟷ is also transitive; i. e. i ⟷ j, j ⟷ k imply I ⟷ k. 

            The relation is clearly symmetric, i. e. if  i ⟷ j, then j ⟷ i. 
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The digraph of a chain helps in studying the communication relations. 

            From  we see that 0 ⟷ 1 and 1 ⟷ 2 implies  0 ⟷ 2. 

            The states of this chain are such that every state can be reached from 
every other state. 

2. 1. 2 Class Property 

                   A  class of states is a subset of the state space such that every of 
the class communicates with every other and there is no other state outside the 
class which communicates with all other states in the class. A property defined 
for all states of a chain is a class property is its possession by one state in a 
class implies its possession by all states of the same class. One such property 
is the periodicity of a state.  Periodicity: 

                State I is a return state if K$$�
� ≥ 0 for some n ≥ 1. The period ;$ of a 

return to state i is defined as the greatest common divisor of all m such that K$$�N�> 0. Thus 

   ;$ = G. C. D. �� ∶  K$$�N� >  0� ; 

State i is said to be aperiodic if ;$ = 1 and periodic if ;$> 1. Clearly state I is 
aperiodic if K$$ ≠ 0. 

It can be shown that two distinctive states belonging to the same class have 
same period. 

2. 1. 3 Classification of Chains: 

              If C is a set states such that no state outside C can be reached from 
any state in C, then C is said to be closed. If C is closed and j ∈ C while k ∉ C,  

then KJT�
� = 0 for all, i. e. C is closed iff ∑ K$JJ∈�  = 1 for every I ∈ C. Then the 

sub-matrix (� = LK$JM , I, j, ∈ C, is also stochastic and P can be expressed in 

the canonical form as : 

   P = �(�     0��    ^� 
            A closed set may contain one or more states. If a closed set contains 
only one state j then state j is said to be absorbing: j is absorbing iff  KJJ = 1, KJT = 0, k ≠ j. In Example 1 (b), states 0 and 4 are absorbing.  

           Every finite Markov chain contains at least one closed set, i. e. the set 
of all states or the state space. If the chain does not contain any other proper 
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closed subset other than the state space, then chain is called irreducible; the t. 
p. m. of irreducible chain is an irreducible matrix. In an irreducible Markov 
chain every state can be reached from every other state. The Markov chain of 
Example1(g) is irreducible. Chains which are irreducible are said to be 
reducible or non – irreducible; the t. p. m. is reducible. The irreducible 
matrices may be subdivided into two classes: primitive (aperiodic) and 
unprimitive (cyclic or periodic) (See Section A.4 Appendix). A Markov chain 
is primitive (aperiodic) iff the corresponding t. p. m. is primitive.  In an 
irreducible chain states belong to the same class. 

2. 1. 4 Transient and Recurrent States 

 We now proceed to obtain a more sensitive classification of the 
states of a Markov chain. 

     Suppose that a system starts with state j. Let 7JT�
� be the probability that it 

reaches the state k for the first time at the nth step (or after n transitions) and 

let KJT�
�  be the probability that it reaches state k (not necessarily for the first 

time) after n transitions. Let �T given that the chain starts at state j. A relation 

can be established between 7JT�
� and KJT�
� as follows. The relation allows 7JT�
� 
to be expressed in terms of KJT�
�. 
Theorem2.1.5(First Entrance Theorem) 

Whatever be the states j and k, KJT�
� = ∑ 7JT�)�
){� KTT�
!)� , n ≥ 1, with KTT��� 
= 1, 7JT��� = 0, 7JT��� = KJT . 

Proof:   Intuitively, the probability that starting, with j, state k is reached for 
the first time at the ?�� step and again after that are �� − ?���  step is given by 7JT�
�KTT�
!)� for all r ≤ n. These cases are mutually exclusive . Hence the result 

Note: (1) The recursive relation (4.1) can also be written as 

    KJT�
� = ∑ 7JT�)�
!�){� KTT�
!)� + 7JT�
� ,  n > 1. 

 (2) For a rigorous proof which uses the strong Markov property, 
see Iosifescu (1980). 

 (3) In practice, it is sometimes convenient to compute 7JT�)� from 

the diagraph of chain. 
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2. 1. 6.  First passage time distribution 

             Let �JT denote the probability that starting with state j the system will 

ever reach state k. Clearly 

    �JT = ∑ 7JT�
�P
{�  

We have    sup KJT�
� ≤ �JT ≤ ∑ KJT�N�N ��  for all n ≥ 1. 

We have to consider two cases, �JT = 1 and �JT< 1. 

When �JT = 1, it is certain that the system starting with state j will reach state 

k; in this case { 7JT�
�, n = 1, 2, … } is a proper probability distribution and this 

first passing time distribution for k given that the system starts with j. 

 The mean (first passing) time from state j to state k is given by �JT = ∑ �7JT�
�P
{� . 

In particular, when k = j, { 7JJ�
�, n = 1, 2,…} represents the distribution of the 

recurrence times of j; and �JJ = 1 will imply that the return to the state j is 

certain . In this case 

   �JJ = ∑ �7JJ�
�P
{�  is known as the mean recurrence time 

for the state j. 

Thus, two questions arise concerning state j: first, whether the return to state j 
is certain and secondly, when this happens, whether the mean recurrence time �JJ is finite. 

  It can be shown that 

   ;$= G.C.D. �� ∶  K$$�N� >  0�  = G. C. D. �� ∶  7$$�N� > 0 . 

Definitions  

        A  state j is said to persistent (the word recurrent is also used by some 
authors; we shall however use the word persistent ) if �JT< 1 (i. e. return to 

state j is uncertain). A persistent state j is said to be null persistent if �JJ = ∞, 

i. e. if the mean recurrence time is infinite and is said to be non – null (or 
positive) persistent if �JJ<∞ , 

Thus the states of Markov chain can be classified as transient and persistent, 
and persistent states can be subdivided as non – null and null persistent. 
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        A persistent non – null and aperiodic state of a Markov chain is said to be 
ergodic. Consider the following example. 

Example 5.  

Let  �	
, � ≥ 0� be a Markov chain having state S = { 1, 2, 3, 4 ) and 
transition matrix 

      P = 

YZZ
ZZZ
ZZZ
[ � �      0     0 
1     0     0      0 
��     0     ��      0 

0    0     �� �� _̀̀
`̀̀
`̀̀
a
 

Here 7  ��� =
�� , 7  ��� = 7  � � = …. = 0 so that �   = ∑ 7  �
�P
{� = �� + 0 +0..=1/2 < 1. 

Hence state 3 is transient.  

Again 7hh��� =  
�� ,    7 hh�
� = 0, n ≥ 2, so that �hh = ∑ 7hh�
�P
{� = �� + 0 + 0 … =1/2< 1. 

Hence   state 4 is also transient.  

For state 1: 

Now 7����� =  
�  , 7����� = 

�  and ��� =∑ 7���
�P
{� �  + 
�  = 1, so that state 1 is 

persistent. 

Further since ��� = = ∑ �7���
�P
{�  1. 
�  + 2. 

�   = 
i , state 1 is non – null 

persistent.  

Again K�� =  
� > 0 , so that state 1 is aperiodic. Since state 1 is non-null 

persistent and aperiodic clearly  State 1 is ergodic. 

For State 2: 

 7����� = 0, 7����� = 1 . 
�  , 7��� � = 1 . 

�  . 
�  , 7���h� = 1 . m� n�

 . 
�  

             …7���
� = 1 . m� n
!�
 . 

�  , n ≥ 2 
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So that    ��� = ∑ 7���
�P
{�  = ∑ m� nT!�PT{�   . 
�  = 1 

Thus state 2 is persistent.  

Now we have 

    ��� = ∑ e 7���T�PT{�   =  ∑ e m� nT!�PT{�  . 
�  = 

2∑ e m� nT!�PT{�  = 
i� 

So that state 2 is non – null persistent. It is also aperiodic, and hence ergodic. 

 In the above example , calculation of 7$$�
� and so of �$$ = ∑ 7$$�
� was easy. But 

sometimes it is not so easy to calculate  7$$�
� for n ≥ 2. In view of this, another 

characterization of persistence is given in Theorem 2. 2. 

Example 6:  

Consider a Markov chain with transition matrix 

   P = 

���
�
���

 0     0     1     0  
0      0      0      1
0      1     0     0 

�h �j �j �� ���
�
���. 

Show that all states of the above MC are ergodic. 

Solution:   It can be easily seen that the chain is irreducible. Consider state 4: 

we have Khh = 
��> 0 ; state is aperiodic and 7hh��� = 

�� , 7hh��� = 
�j , 7hh� � = 

�j,7hh�h� = 
�h, 7hh�
� = 0 , n > 4 so that �hh = 1 and �hh = 1. 

�� + 2. 
�j +3. 

�j + 4. 
�h = 

�qj <∞. Thus 

state 4 is ergodic. Hence all states are ergodic. 

 

Theorem 2.1.7 

 Consider a M. C, { 	
 : � ≥ 0 }. Then the state j is persistent iff
   

   ∑ KJJ�
�P
{�  = ∞ .     (4. 

6) 
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Proof: Let    (JJ (s) = ∑ KJJ�
�P
{� @
 = 1 + ∑ KJJ�
�P
{� @
 , |s| < 1 

and   �JJ (s) = ∑ 7JJ�
�P
{� @
 =  ∑ 7JJ�
�P
{� @
 , |s| < 1 

be the generating functions of the sequences �KJJ�
�� and �7JJ�
�� respectively. 

 We have from(4.1)  

   KJJ�
� = ∑ 7JJ�)�KJJ�
!)�P){�     

 (4. 7) 

Multiplying both sides of (4. 7) by @
 and adding for all n ≥ 1, we get 

    (JJ (s) – 1 = �JJ (s) (JJ (s). 

         The  right hand side of the above is immediately obtained by considering 
the fact that the r. h. s of (4. 7) is a convolution of { �JJ} and { (JJ } and that 

the generating of the convolution is the product of the two generating 
functions. Thus we have 

   (JJ (s) = 
��! ��� ��� , |s| < 1. 

Assume that state j is persistent which implies that �JJ = 1. Using Abel’s 

lemma, we get  

   A6�% →��JJ�@� = 1 

Thus   A6�% →��JJ�@� → ∞ 

Since the coefficients of (JJ (s) are non – negative Abel’s lemma applies and 

we get ∑ KJJ�
� = ∞ ,  Conversely, suppose the  state j is transient, then by 

Abel’s lemma, we get 

   A6�% →��JJ�@�< 1 

Also from (4.8),  A6�% →�(JJ�@�<∞ 

Since the coefficients (JJ�
� ≥ 0, we get  

   ∑ (JJ�
� <  ∞
 .   

This is a contradiction to our hypothesis. ↕. Hence the j is persistent.  .   ⃞ 
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2.1.8.Remark: 

 The result of Theorem 2. 2 can also deduced from the following 
result. Doblin’s Formula: Whatever be the states j and k, 

   �JT = A6�N → P ∑ ���� 3 �z3�/�H ∑ ���� 3 �z3�/     

 (4. 9) 

And, in particular �JJ = 1 -  A6�N → P ��H ∑ ���� 3 �z3�/  . 

Example 7: 

Consider the Markov chain with t. p. m. 

   P = 

YZ
ZZ
[ 0     1       0 

��      0     ��
0      1       0 _̀

`̀
a
  

The chain is irreducible as the matrix is so. We have  

   (� =  

YZZ
ZZ[

��      0       ��
0      1        0 
��       0       �� _̀̀

`̀a . (  = P ; 

In general,   (� 
 = (�, (� 
H� = P , 

So that    K$$�� 
�> 0 , K$$�� 
H��  = 0 for each I . 

The states are periodic with period 2. 

We find that 7�� = o, 7����� = 1 so that 7�� = ∑ 7���
�
  = 1, i. e. state 1 is persistent 

and hence the other states 0 and 2 are also persistent. 

Now   ��� = = ∑ 7���
�
  = 2, 

i. e. state is non - null. Thus the states of the chain are periodic (each with 
period 2 ) and persistent non – null. Further, 

   K���� 
� → ��// = 
�� = 1 for all n.⃞ 
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We now state a lemma without proof (for proof, see Feller, Vol. I). 

2.1.9.Basic limit theorem of renewal theory: 

Lemma 2. 1. Let �7
� be a sequence such that 7
 ≥ 0 , ∑ 7
 = 1 and t (≥ 1) be 
the greatest common divisor of those n for which 7
> 0. 

Let �>
� be another sequence such that >� = 1 and >
 = ∑ 7)>
!)�� ≥ 1�
){� . 
Then 

      A6�
 → P>
� = 
��,        (4. 10) 

Where � = ∑ �7
P
{�  , the limit being zero when � = ∞; and A6�  → P>  = 0 
whenever N is not divisible by t. The lemma will be used to prove some 
important results. 

Theorem 2.1.10: 

 If state j is persistent non – null, then as n → ∞ 

(i)KJJ�
�� → ����,when state j is periodic with period r; 

and  (ii) KJJ�
� → ����,when state j is aperiodic. 

 In case state j is persistent null, (whether periodic or aperiodic), 
then 

   KJJ�
� → 0 , as n → ∞. 
Proof: Let state j be persistent; then 

   �JJ = ∑ � 7JJ�
�
     is defined. 

Since (4.7) holds, we may put 

   7JJ�
� for 7
 , KJJ�
� for >
, and �JJ for � 

 Applying the lemma(2.1), we get 

   KJJ�
�� → ����  , as n  →  ∞, when state j is periodic with 

period t. 

 When state j is aperiodic (i. e. t =1),   KJJ�
� → ����  , as n  →  ∞. 
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 In case state j is persistent null, �JJ = ∞, andKJJ�
� → 0 as n → ∞.⃞ 
2.1.11Note:  

(1) If j is persistent non – null, thenA6�
 → PKJJ�
�> 0 

and (2) if j is persistent null or transient then A6�
 → PKJJ�
� → 0. 

Theorem 2.1.12 

  If state k is persistent null, then for every j,   A6�
 → PKJT�
� →  0.

            
     (4. 14) 

 If state k is aperiodic, persistent non – null then, A6�
 → PKJT�
� →������ .            

    (4. 15) 

Proof:We have 

   KJT�
� = ∑ 7JT�)�KTT�
!)�
){�  . 

Let n  >  m, then 

   KJT�
� = ∑ 7JT�)�KTT�
!)�N){�  +  = ∑ 7JT�)�KTT�
!)�
){NH�  

     ≤ ∑ 7JT�)�KTT�
!)�N){�  + ∑ 7JT�)�
){NH�  .  

 (4. 16) 

Since state k is persistent null, 

   KTT�
!)� → 0, as n → ∞. 

Further, since    

   ∑ 7JT�N� <  ∞PN{� , ∑ 7JT�)�
){NH� → 0 as n, m →  ∞. 

Hence as n →  ∞ 

   KJT�
� → 0. 

From (4. 16)    
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   KJT�
� − ∑ 7JT�)�KTT�
!)�N){� ≤ ∑ 7JT�)�
){NH�   

  (4. 16 a) 

Since j is aperiodic, persistent and non – null, then by Theorem 2. 3. 

   KTT�
!)� → ���� as n → ∞. 

Hence from (4.16 a), we get, as n, m → ∞, KJT�
� → ������ .⃞ 
2.2 MARKOV CHAIN WITH DENUMERABLE NUMBER OF STATES 

                    So far we discussed Markov chains with finite number of states. 
The result can be generalized to chain with a denumerable number of states (or 

with countable state space). Let P = LK$JM be the t. p. m. of the chain �	
, � ≥1 with countable states space S = { 0, 1, 2,… }. Then (e = K6I�e� is well 
defined. The states of the chain may not constitute even single closed set. For 
example when 

     K$J = 1, j = I + 1 

      = 0, otherwise, 

 The states do not belong to any closed set, including S. 

For dealing with a chain with a countable state space, we need a more 
sensitive classification of states – transient, persistent null and persistent non – 
null. Beside irreducibility and aperiodicity, non – null persistence is required 
for ergodicity for such a chain (a chain with countable state space) while 
aperiodicity and irreducibility (or some type of reducibility) were enough for 
ergodicity for a finite chain. We shall state the theorem without proof.  

Theorem 2.2.1  (General Erogodic Theorem) 

 Let �	
� be an irreducible, aperiodic Markov chain with state 

space S = {…., k,…} and having t.p.m. P =LK$JM. If the chain is transient or 

persistent non – null then A6�
 → PKJT�
� = 0. If the chain is persistent non – null 

then limits A6�
 → PKJT�
� = ¡T exist and are independent vector. The vector ¢£ 
is given by the solution of 

   ¢£ = ¢£ P, 

That is   ¡T = ∑ ¡JJ KJT  . 
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Proof: 

         The above theorem is a generalization of Theorem 2. 7 concerning 
ergodicity of finite, irreducible, aperiodic chain ⃞ 
Example 8. 

          A  Markov chain occurring in queueing theory is a chain with a 
countable state space S = { 0, 1, 2,…} and transition probability matrix 

   P = 

YZZ
Z[ K�K�K�K     −K�K�K�K    −0     K�K�K�     −0      K�K�K�     −0      K�K�K�     −_̀̀

à
 

where ∑ KT = 1. 

Let   P �@� = ∑ KTT @T and V �@� = ∑ ¡TT @T 

Be generating functions of �KT� and �¡T� respectively. Assume that K$> 0 for 
all i. The chain is irreducible and aperiodic. It can be shown that the states are 
transient, persistent null or persistent non – null according as (£ (1) > 1, = 1 or 
< 1. Thus when (£ (1) < 1, ¡T’s are the unique solutions of the equations (6. 
2). The equations (6. 2) becomes: 

     ¡� = K�¡� + K�¡� 

     ¡� = K�¡� + K�¡� + K�¡� 

     ¡� = K�¡� + K�¡� + K�¡� + K�¡  

           …    …          …          ….          … 

     ¡T = KT¡� + KT¡� + KT!�¡� +…. + K�¡TH� 

Multiplying both sides of the ( k + 1) st equation by @T ( k = 0, 1, 2,…) and 
adding over k, we get  

     V�@� = ¡� P�@� + ¡� P�@� + ¡� @ P�@� + ¡ @� P�@� 
+…. 

      = P�@� �¡� +  �V�@� − ¡�� @� 

This gives 

    V�@� = ¡��1 − @�P�@� / �P�@� − @�, 

In terms of ¡� which can be evaluated from ∑ ¡T =1. We have 
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    A6�% →� ¦�%�§|  =  A6�% →� ��!%�w�%�w�%�!%  

Whence   ¡� = 1 - (£ (1) �> 0�. 

Thus   V�@� = 
*� ! �¨���4��!%� w�%�w�%�!%  . 

2.3  REDUCIBLE CHAINS 

   In the previous section, we studied the limiting properties of irreducible 
Markov Chains. In this section we propose to discuss some properties of 
reducible chains. 

2.3.1 Finite Reducible chains with one closed set> 

 Consider a Markov chain with state space S , having a single 
closed set C ,in which all states communicate with each other. Also assume 
that the states of C are periodic. The ergodicity of finite irreducible Markov 
chainswas already considered in Theorem 2.7. Further ergodicity theorem for 
reducible chains having a single closed class of periodic states is given below.  

Theorem 2.3.2  (Ergodic theorem for reducible chain)  

 Let �	:
 ∶ � ≥ 0� be a finite Markov Chain with periodic states. 
Let P be the transition matrix of the m – state chain with state space S, and (� 
the transition (submatrix) of transitions among the k �≤ �� members of the 
closed class C. Let ¢�£ = { …., ¡J,….} be the stationary distribution 

corresponding to the stochastic submatrix (�, i. e. (�
 → 9 ¢�£ .If  ¢£ = �¢�£, 0£�, 
then, as (
 → e ¢�£. In other words, elementwise ¢£ is the stationary 
distribution corresponding to the matrix P. 

Proof: An outline of proof is given below: 

 The transition matrix of the chain can be put in canonical from 

   P = © (�     0 ��     ^ ª 
Where the stochastic (sub) matrix corresponds to transitions among the 
members of class C and Q corresponds to transitions among the other the 
states (of S - C). 

We have   (
 =  ©(�
     0 �
^
 ª 
Where   �
 = �
!�(� + ^
!���. Writing �� = R, We get 

   �
H� = ∑ ^$�(�
!$
${�  = ∑ ^
!$�(�$
${�  
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As n → ∞   (�
 → 9 ¢�£ 
and   ^
 → 0. 

Again it can be shown that, as n → ∞  

   �
H� → 9 ¢�£ 
So that, writing ¢£ = �¢�£, 0£� we have 

   (
 → 9 ¢�£.⃞ 
2. 3. 3 Chain with one Single Class of Persistent Non – null Aperiodic 
States 

 Now suppose that the states of the closed class C are non – null 
persistent and aperiodic, the remaining states of S being transient; the transient 
states constitute a set T. 

Then we have , for each pair i, j, 

   A6�
→PK$J�
� = ¡J 

Is independent of i, when i, j are persistent, and also when j is persistent and i 
is transient; again  

   A6�
→PK$J�
� = 0 when j is transient. 

In this case shall write the transition matrix as 

    P = © (�     0 ��     Vª, 
where M gives the matrix of transitions among the transient states. 

Example 9: Consider a reducible chain with S = �1, 2, 3, 4 � and t. p. m. 

   P = © (�     0 ��     ^ ª 
Where    (� = 

YZZ
Z[�� ��

� � _̀̀
à
 .    �� = 

YZZ
Z[ 0    �h
 0    �h_̀̀

à
 .        V= 

YZZ
Z[ h     0 

�� �h _̀̀
à
  . 

Thus  (�
~9 ¢�£  where ¢�£ = �¢�£, 0£� , = mhq , 0  q , 0n. 

In other words, for all I as n → ∞  
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   K$��
� → hq 

   K$ �
� →  q 

   K$��
� → 0 

   K$h�
� → 0 . 

Example 10: Stochastic Inventory Model(Seneta, 1981) 

Consider that a store stocks a certain item, the demand for which is given by 

  KT = Pr { k demand of the item in a week }, 

 KT> 0, k = 0, 1, 2 and KT = 0, k ≥ 3. 

Stocks are replenished at weekends according to the policy: not to replenish if 
there is any stock in store and to obtain 2 new items if there is no stock. Let 	
 

be the number of items at the end of ��� week, just before week’s 
replenishment, if any, and Pr �	� = 3� = 1. 

Then �	� � ≥ 0� is a Markov chain with state space S = { 0, 1, 2, 3 } and t. p. 
m. 

   P = t K�K�K�      0  K� + K�K�     0        0 K�K�K�      0 0              K�K�K�
u  .               K� + K� +  K� =

1  . 
The Markov chain is reducible, with a single closed class C with states 0, 1 
and 2, the states being persistent non – null and aperiodic. The t. p. m 
(submatrix) is 

   (� = � K�K�K�K� + K�K�     0K�K�K� � 
The state 3 is transient. 

Thus   P = © (�     0 ��     Vª 
Where    �� = �0, K�, K��, M = �K�� and 

   0 = «000¬ . 
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Using Theorem 2.10 we get, ¢�£ =  L¡�, ¡�,,  ¡�M 

   (�
 → 9 ¢�£ 
    ¢�£(� =   ¢�£ .  ¢�£ 9 = 1 

   K$J�
� → ¡J , j = 0, 1, 2. 

   ¡� = �1 − K� �� / c 

   ¡� = K� / c 

   ¡� = K� �1 − K� � / c 

where   C =  �1 − K� +  K�� . 

Further K
 → 9 ¢�£ where ¢£ = �¡�, ¡�, ¡�, 0� .⃞ 
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UNIT III 

.MARKOV PROCESS WITH DISCRETE 
STATE SPACE 

 3.1. Introduction 

 3.2 Poisson Process 

 3.3 Related distributions 

 3.4 Properties of Poisson Process 

            3.5 Generalization of Poisson Process 

3.1 Introduction  

 Discrete state space Markov Processes has many applicants in day to 
day processes, such as inventory control in business, queuing systems and 
reliability theory. Poisson process is a versatile process which represents 
almost all random processes whose values move on a discrete space. The inter 
success time or inter-arrival time between two notified events are assumed to e 
exponential with parameter λ. 

3.2. Poisson processes 

 Poisson is a special kind of Markov process with exponential inter 
arrival time. It is a stochastic process in continuous time with discrete state 
space which plays a vital role in modelling real life systems. 

Description: Consider a random event ɛ such as incoming telephone calls, 
arrival of customer for services, occurrence of accidents etc. 

 Let us denote "��� the number of occurrence of the event ɛ in an 
interval of duration t. That is "���;9�<�9  the number of events ɛ occurred up 
to time epoch t. Then �"���: � ≥ 0 � is a counting process with time space �H. 

The path diagram of the process has step structure. 
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Fig 3.1 

Let K
��� = Pr�"��� = ��. This probability is a function of time t 

and∑ K
���P
{� = 1, where  �K
���� represent probability distribution of the 
random variable "��� for every value of t. 

The family of random variables,  �"���: � ≥ 0} is a stochastic process. Now 
we proceed to show that "���follows a Poisson distribution with parameter λ, 
the mean is λt. Hence the stochastic process, �"��): t≥ 0 � is a Poisson 
process. 

3.2.1Poisson process and its Postulates: 

   1. Independence:  The random variable, �� + ℎ� − "��� , the number of 
occurrences in the interval ��, � + ℎ� is independent of the number of 
occurrences prior to that interval. 

   2. Homogeneity in time:K
��� depends only on the length t of the interval 
and is independent of the position of the interval. That is K
��� = Pr {number 
of occurrence of event E in the interval���,�� + �� } 
  3. Regularity:   In an interval of infinitesimal length h, the probability of 
exactly one occurrence is λh + o�h� and that of more than one occurrence is <�ℎ�. 
(Here o(h) is defined as lim�→� b���� = 0.) 
In other words, if the interval between t and t + h is of very short duration h, 
then 

   K��ℎ�= λ h + o (h) 

   ∑ KT�ℎ�PT{�  = 0 (h).  

Since , ∑ K
�ℎ�P
{�  = 1,It follows that 

   K�(h) = 1- λ h + o (h)    
 (1.6) 

Theorem 3.1. Under the postulates 1, 2 & 3,  the random variable  N (t) 
follows Position distribution with mean  λ t. That is  K
 ��� is given by the 
Position law: 

   K
 ��� =  
²³´µ�¶��3
 !  ,   n = 0, 1 ,2, 3…. 

 (1.7) 
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Proof: 

Consider K
�� + ℎ � for n ≥ 0: 

 

 The  n events by epoch t + h can happen in the following mutually exclusive  
events  

   ¸�, ¸�, ¸ , … . . , ¸
H� . 

For n ≥ 1 

¸�:   n  occurrences  by epoch t and no occurrence event between t and t + h; 

We have,         Pr�¸�� = Pr �" ��� = ��Pr �" �ℎ� = 0 | "��� = �� (1.8) 

      = K
���K��ℎ� 

      = K
����1 − ¹ℎ� + o �ℎ� 

¸�: �� − 1�  <==>??9�=9@ by t and 1 occurrences between t and t + h; 

We have,       Pr�¸�� = Pr �" ��� = � − 1�Pr �" �ℎ� = 1 | "��� = � − 1� 
      = K
!����K��ℎ�    
    (1.9) 

      = K
!�����¹ℎ� + o �ℎ� 

For n ≥ 2 

¸ :   �� − 2� occurrences by epoch t and 2 occurrences  between t and t + h; 

We have,   Pr �¸ � = K
!�����K��ℎ��≤  K� �ℎ�, 

Same result holds for  Pr �¸h�, Pr �¸i�,…..  

 Thus we  have 

   ∑ (?�¸TH��
T{�  ≤ ∑ KT�ℎ�
T{�  = o�ℎ� 

and so  K
�� + ℎ� = K
����1 − ¹ℎ� + K
!�����¹ ℎ�+ o�ℎ�, n ≥ 1     

or,   
~3��H�� { ~3���� = - λK
��� + λK
!���� + 

�����  

 (1.10) 

taking  limit, as h → 0, we get  

   K
£ ��� = - λ[K
��� − K
!����º, n ≥ 1.  (1.11) 
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For n = 0, we get 

   K��� + ℎ�= K� (t) K� (h) = K�����1 − ¹ℎ�+ o�ℎ� 

 

or   
~|��H��! ~| ����  = -λ K���� + 

�����  

whence, as h → 0,K�£ ��� = - λK����.     (1.12) 

Initial condition: 

Suppose that the process starts from scratch at time 0, so that N (0) = 0, i. e. 

   K��0� = 1;  K
�0� for n ≠ 0.  Z                                                          
(1.13) 

The differential – difference equations(1.11)and the differential equation(1.12) 
together with  (1.13) completely specify the system. Their solutions give the 
probability distribution { K
��� <7 " ���. The solutions are given by 

    

   K
���= 
²³´µ�¶��3
!  , n = 0, 1, 2,….. ⃞ 

 (1.14 

Proofs: (alternative) 

We indicate here two other methods of solving these equations. 

(1) The method of induction: The solution of (1.12) is given byK���� = »9!¶�. Since K��0� = 1, we have C = 1 so that K����=  9!¶�. Consider 
(1.11) for n=1. Substituting the value of K� and solving the equation 

and using (1.13), we find K����= λ t. 9!¶�. Thus (1.14) is seen to hold 
for n = 0 and 1. Assuming that it holds for (n-1) it can be shown 
likewise that it holds for any n. Hence, by induction, we get (1.14) for 
all n. 

(2) The method generating function: Define the probability generating 
function 

                   P�@, �� = ∑ K
���P
{� @
 = ∑ (?P
{� �" ��� = ��@
 = E*@ ���4 .  

(1.15) 
 

Now            P�@, 0� = ∑ K
�0�P
{� @
 = K��0� + K��0� s +…. = 1.         (1.16) 
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We have    
¼¼� P�@, �� = ∑ ¼¼�P
{� K
���@
 = ∑ K£���P
{� @
 + K
£ ���@
 + K�£ ���; 

   
 ∑ K
���@
P
{�  = P �@, �� - K����; 

and ∑ K
!����@
P
{�  = s P�@, ��.  (1.17) 

Multiplying (1.11) by @
 and adding over for n = 1, 2, 3,…. and using (1.17), 
we get  

 
¼¼� P�@, �� - K�£ ��� = - λ [�( �@, �� − K����� − @(�@, ��º 

or 
¼¼� P�@, �� + λK���� = P �@, ���¹ �@ − 1��+ λK����. 

Thus 
¼¼� P�@, �� = P�@, ���¹�¹ @���.  (1.18) 

Solving (1.18), we get 

         P �@, @�� = A 9¶ �%!���   (1.19) 

Now P �@, 0� = 1 from (1.16), so that A = 1. 

Hence the p. g. f of Position process is given by 

                     P �@, �� = 9¶ � �%!�� 
                                  = 9!¶ � �∑ �¶ % ��3
 !P
{� � , 

So that  

K
��� ≡ coefficient of @
 in P �@, �� 

                                 = 
²³´ µ �´ µ�3


 ! ,  n ≥ 0.       ⃞ 
Corollary 3.2.: 

                         For a Poisson process, we have   

                 (i) E �" ���� = λ t 

          and (ii)   var �" ���� = λ t . 

Proof: The proof is immediate consequence of previous theorem because K
��� is well defined □ 

3.2.2Remark: 
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           The mean number of occurrences in an interval of length t is λ t, so that 
the mean number of occurrences per unit time �� = 1�, i. e. in an interval of 
unit length is ¹. The mean rate ¹ per unit time is known as the parameter of the 
Poisson process. 

              The mean and the variance of N (t) are function of t; in fact, its 
distribution is functionally dependent on t. As such the process �" ���, � ≥ 0� 
is not stationary – it is evolutionary 

              While �" ���, � ≥ 0� is a continuous parameter stochastic process 
with discrete state space, E�" ���� is a non – random continuous function of t. 

Corollary 3.3: 

         If E occurred r times up to initial instant 0 from which t is measured, 
then the initial condition will be 

K)�0� = 1, K
�0� = 0, n≠r. 

Then K
��� = Pr { Number N (t) of occurrences by epoch t is n-r, n ≥ r } 

 = 
²³´ µ �´ µ�3³¾

�
!)� !  , n ≥ r 

 = 0,    n ≥ r. 

Example 1. 

         Suppose that customers arrive at a Bank according to a Poisson process 
with a mean rate of a minute. Then the number of customers N (t) arriving in 
an interval of duration t minutes follows Poisson distribution with mean at. If 
the rate of arrival is 3 per minute, then in an arrival of 2 minute, the probability 
that the number of customers arriving is: 

(i) exactly 4 is 

 
²³¿�k�Àh !  = 0.133, 

(ii)  greater than  is ∑ ²³¿�k��T !PT{i   = 0.714 

 
(iii)  less than 4 is ∑ ²³¿�k��T ! T{�   = 0.152, 

 

  (using tables of Poisson distribution). 
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Example  2: 

            A machine goes out of order whenever a component part fails. The 
failure of this part is in accordance with a Poisson process with mean rate of 1 
per week. 

            Then the probability that two weeks have elapsed since the last failure 
is 9!� = 0.135, being the probability that time t = 2 weeks, the number of 
occurrences is 0. 

           Suppose that there are 5 spare parts of the component in an inventory 
and that the next supply is not due in 10 weeks. The probability that the 
machine will not be out of order in the next 10 weeks is given by 

∑ ²³/|�����T !iT{�  = 0. 068, 

Being the probability that the number of failures in t = 10 weeks will be than 
or equal to 5. 

Example  3:  

Estimation of the parameter of Poisson process. For a Poisson process �" ����, 
as t  → ∞ 

                                     Pr → �Á ���� −  ¹Á ≥ Â �  0, 

Where Â> 0 is a preassigned number. 

This can be proved by applying Tshebyshev’s lemma ( for a r. v. X) 

                                   Pr �|	 − Ã �	�| ≥ :� ≤ §}) �y�}1  , for a > 0. 

From the above, we have, for X = N ���, 

                                Pr  �|"��� −  ¹ � | ≥ :� ≤ ¶ �}1 

 or                           Pr �Á ���� −  ¹Á ≥ }�� ≤ ¶ �}1 

or                            Pr �Á ���� −  ¹Á ≥ Â � ≤ ¶ �Ä1 . 

Hence                    Pr �Á ���� −  ¹Á ≥ Â � → 0 as t → ∞ 

This implies that for large t, the observation N (t) / t may be used as a 
reasonable estimate of the mean rate ¹ of the process �" ����. 
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3.3POISSON PROCESS AND RELATED DISTRIBUTIONS 

3. 3. 1Inter-arrival  Time 

                  With a Poisson process, �"���, � ≥ 0�, where "��� denotes the 
number of occurrences of an event E by epoch t, there is associated a random 
variable – the interval X between two successive occurrences of  E. We 
proceed to show that X has a negative exponential distribution. 

Theorem 3.3.2 

The interval between two successive occurrences of a Poisson process �"���, � ≥ 0� having parameter ¹ has a negative exponential distribution with 

mean 
�¶. 

Proof: 

Let X be the random variable representing the interval between two successive 
occurrences of �"���, � ≥ 0�and let (?�	 ≤ 0� = ��0� be its distribution 
function. 

Let us denote two successive events by Ã$ and Ã$H� and suppose that Ã$ 
occurred at the instant �$. Then 

(?�	 > 0� = (? { Ã$H� did not occur in ��$ , �$ + 0� given that Ã$ occurred at 
the instant �$ }  
 = (? { Ã$H� did not occur in ��$ , �$ + 0� |  "��$� = 6 }  
                                         (because of the postulate of  independence) 

 = Pr � no occurrence takes place in an interval ��$ , �$ + 0� of 
length 0 | "��$� = 6 � 
= Pr � "�0� = 0 | " ��$� = 6 �K��0� =  9!¶Å , 0 > 0 . 

Since 6 is arbitrary, we have for the interval X between any two successive 
occurrences, 

 ��0� = Pr�	 ≤ 0� = 1 − Pr�	 > 0� = 1 − 9!¶Å, 0 > 0. 
The density function is 

 7�0� = �£�0� = ¹9!¶Å , �0 > 0�.  
 It can be further proved that if 	$ denote the interval between Ã$ and Ã$H�, 6 =1, 2, … ., then 	�	�, … also independent. We omit the proof which is outside 
the scope of this book. We state the result as follows: 
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Theorem 3.3.4 

         The intervals between successive occurrences of a Poisson process are 
identically and independently distributed random variable which follow the 

negative exponential law with mean 
�¶. The convers also holds; this is given in 

Theorem 3.4 below. These two theorems give a characterization of the Poisson 
process. 

Theorem 3.3.5 

        If the intervals between successive occurrences of an event E are 
independently distributed with a common exponential distribution with mean �¶, then the events E form a Poisson process with mean λt. 

Proof: 

         Let #
 denote the interval between �� − 1���  and ��� occurrence of a 
process �"���, � ≥ 0� and let the sequence #�, #�, … be independently and 
identically distributed random variables having negative exponential 

distribution with mean 
�¶. The sum Æ
 = #�+. . +#
 is the waiting time up to 

the ��� occurrence, i. e. the time from the origin to the ��� subsequent 
occurrence. Æ
 has a gamma distribution with parameters λ, n. The p. d. f. Ç�0� and distribution function �È3 are given respectively by 

 Ç�0� = ¶3Å3³/²³´ É
Ê�
�  , 0 > 0 

And �È3�t� = Pr�Æ
 ≤ t� = Ì Ç�0�;0�� . 
The events �"��� < �� and Æ
 = + ⋯ + #
 > � are equivalent. Hence the 
distribution functions � ��� and �È3 satisfy the relation 

 �È3�t� = Pr�Æ
 ≤ t� = 1 − Pr�Æ
 ≤ t� 
  = 1 − (?�"��� < �� = 1 − (?�"��� ≤ �� − 1�� 

= 1 − � ����� − 1�. 
Hence the distribution function of "��� is given by 

 � ����� − 1� = 1 − �È3��� 

 = 1 − Ì ¶3Å3³/²³´ É
Ê�
� ;0��  
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 = 1 − �Ê�
� Ì Î
!�9!Ï¶��  ;Î 

 = �Ê�
� Ì Î
!�9!ÏP¶�  ;Î 

 = ∑ ²³´ µ�¶ ���
J !
!�J{� (integrating by parts). 

Thus the probability law of "��� is 

K
��� = (?�"��� = �� = � ������ − � ����� − 1� 

 = ∑ ²³´ µ�¶ ���
J ! − ∑ ²³´ Ð�¶ ���

J !
!�J{�
J{�   

 = ²³´ µ�¶ ��3

 !  , � = 0, 1, 2, … 

Thus the process �"���, � ≥ 0� is a Poisson process with mean λt. Note that 
Poisson process has independent exponentially distributed inter-arrival times 
and gamma distributed waiting times.⃞ 
Example 7: 

         Suppose customers arrive at a service counter in accordance with a 
Poisson process with mean rate of 2 per minute (λ = 2 / minute). Then the 
interval between any two successive arrivals follows exponential distribution 

with mean 
�¶ = �� minute. The probability that the interval between two 

successive arrivals is 

           (i) more than 1 minute is 

 Pr�	 > 1� = 9!� = 0.135 

          (ii) 4 minutes or less 

 Pr�	 ≤ 4� = 1 − 9!h×� = 1 − 9!j = 0.99967 

           (iii) between 1 and 2 minute is 

 Pr�1 ≤ 	 ≤ 2� = Ì 2�� 9!�Å;0 = 9!�9!h =0.0179. 
Example  8: 

           Suppose that customers arrive at a service counter independently from 
two different sources. Arrivals occur in accordance with a Poisson process 
with mean rate of λ per hour from the first source and � per hour from the 
second source. Since arrivals at the counter constitute a Poisson process with 
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mean �¹ + �� per hour, the interval between any two successive arrivals has a 
negative exponential distribution with mean �1/�¹ + ��� hours. 

For example, if taxis arrive at a spot from the north at the rate of 1 per minute 
and from the south at the rate 2 per minute in accordance with two 
independent Poisson process, the interval between arrival of two taxis has a 

(negative) exponential distribution with mean 
�  minute; the probability that a 

long person will have to wait more than a given time t can be found. 

Poisson type of occurrences are also called purely random events and the 
Poisson process is called a purely random process. The reason for this is that 
the occurrence is equally likely to happen anywhere in [0, �] given that only 
one occurrence has taken place in the interval. We state this by the following 
theorem. 

Theorem  3.3.6: 

         Given that only one occurrence of a Poisson process "��� has occurred 
by epoch T, then the distribution of the time interval Ô in [0, �] in which it 
occurred is uniform in [0, �], i. e. 

 Pr� � < Ô ≤ � + ;� | "��� = 1 � = Õ�Ö ,       0 < � <� 

Proof: We have Pr � � < Ô ≤ � + ;� � = ¹9!¶� ;�, 
 Pr� "��� = 1� = 9!¶Ö�¹��, 
and                                            Pr� "��� = 1| Ô = �� = 9!¶�Ö!�� 
The last one being the probability that there was no occurrence in the interval 
of length (T-t). Hence  

 Pr � � < Ô < � + ;� | "��� = 1� 
 = wx � �×Ø×�HÕ� }
Õ  �Ö�{���)� �Ö�{��  

 = wx � �×Ø×�HÕ� � wx�  �Ö�{�| Ø{���)� �Ö�{��  

 ¹9!¶�  ;�9!¶Ö�¹�� = ;�/�. 

It follows that Pr� Ô ≤ @ |  "��� = 1� = %Ö 
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It may be said that a Poisson process distributes points at random over the 
infinite interval [0, ∞] in the same way as the uniform distributes points at 
random over a finite interval [:, d] .          ⃞ 
3.4Properties of Poisson Process 

3.4.1. Additive property:  

          Sum of two independent Poisson processes is a Poisson process. Let "����and "���� be two Poisson processes with parameters ¹� ,¹� respectively 
and let  

 N ��� = "���� + "����. 

The p. g. f. of "$��� (I = 1, 2) is  

                             E *@ Ð���4 = 9¶Ð�%!��� 
The p. g. f. of N��� is 

 E*@ ���4= E *@ /���H  1���4  

And because of independent of "���� and "���� , we have 

 E *@ ���4= E *@ /���4 E*@ 1���4 
  = *9¶/�%!���4*9¶1�%!���4 
  = 9�¶/H¶1��%!��� 
Thus N ��� is a Poisson process with parameter ¹� + ¹�. 

The result can also be proved as follows: 

 
                     Pr�"��� = ��= ∑ Pr�"���� =  ?�
){� . Pr�"���� = � −  ?� 
        = ∑ ²³´/µ�¶/��¾

) !  .
){� ²³´1µ�¶1��3³¾
�
!)� !  

                                     = 
²³�´/Ù´1�µ��¶/H¶1���3


 !  ,         n ≥ 0. □ 

Hence N (t) is a Poisson process with parameter�¹� + ¹��. 

3.3.2. Difference of two independent Poisson processes: The probability 
distribution of N ��� = "���� - "���� is given by, 
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 Pr �N ��� = n� = 9!�¶/H¶1�� m¶/¶1n31 Û|
|L2� Ü¹�¹�M ,   n = 0, ± 1, ± 2,…., 

Where Û
�0� =∑ mÉ1n1¾Ù3
) ! Ê �)H
H��P){�  

Is the modified Bessel function of order n �≥ −1� . 

Proof: (i) The p. g. f. of N ��� is 

 E *@ ���4 = E *@ /���!  1���4 
   = E *@ /���4  E *@!  1���4 , 
Because of the independence of "���� and − "����. Thus 

 E *@ ���4 = E *@ /���4  E 5�% 1���Þ 
   = exp �¹� � �@ − 1��  exp �¹� � �@!� − 1�� 
   = exp *– �¹� + ¹���4 exp �¹� �@ +  ¹� �%� . 
Pr �" ��� = �� is given by the coefficient of @
 in the expansion of the right 
hand side of as a series in positive and negative powers of s. 

(ii) Pr�" ��� = ��can also be obtained directly as follows: 

 Pr �" ��� = �� = ∑ (?�"���� = � + ?� (?P){� �"���� = ?� 
           = ∑ ²³´/µ�¶/ ��3Ù¾�
H)� !P){� ²³´1µ�¶1 ��¾) !  

            = 9!�¶/H¶1�� m¶/¶1n31 ∑ L� Ü¶1¶1M1¾Ù3
) ! �)H
� !P){�  

            = 9!�¶/H¶1�� m¶/¶1n31 Û|
|L2 � Ü¹�¹�M . 

It may be noted that 

(1) the difference of two independent Poisson processes is not a Poisson 
process: 

(2) Û! 
��� = Û|
|���, = 1, 2, 3,…..: 

(3) the first two moments of "��� are given by 
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                E �" ���� = �¹� + ¹�� �  and                   E �"����� = �¹� + ¹�� t + �¹� + ¹����� . 

Example  4. 

         If passengers arrive at a taxi stand in accordance with a Poisson process 
with parameter ¹� and taxis arrive in accordance with a Poisson process with 
parameter ¹� then " ��� = "� (t) −"� (t) gives the excess of passengers over 
taxis in an interval t. The distribution of ��� , i. e., Pr �" ��� = �� , n = 0, ± 1, ± 2…. Is given by *. The mean of " ��� is �¹� + ¹�� t, which is > = 0 < 0 
according as  

    ¹�> = ¹� ; and var {" ��� } = �¹� + ¹�� t 

3.3.3. Decomposition of a Poisson process: 

           A random selection from a Poisson process yields a Poisson process. 
Suppose that " ���, the number of occurrences of an event E in an interval of 
length t is a Poisson process with parameter λ. Suppose also that each 
occurrence of E has a constant probability p of being recorded, and that the 
recording of an occurrence is independent of that of other occurrences and also 
of " ���. 

Theorem: 3.3.4 

 If V ��� is the number of occurrences recorded in an interval of length t, then V ��� is also a Poisson process with parameter¹K. 

Proof:  

The event �V ���� can happen in the following mutually exclusive ways: 

¸) : E occurs �� + ?� times by epoch t and exactly n out of �� + ?� 
occurrences are recorded, probability of each occurrence recorded being p, (r = 
0, 1, 2,…). 

We have 

Pr �¸)� = Pr �Ã <==>?@ �� + ?� �6�9@ dÎ 9K<=ℎ ��. 
Pr�� <==>??9�=9@ :?9 ?9=<?;9; Ç6¡9� �ℎ:� �ℎ9 �>�d9? <7 <==>??9�=9@ 6@ � =? 

   
²³´ µ�¶ ��3Ù¾

�
H)� ! m� + ?� n K
\) . 

Hence   Pr �V ��� = n� = ∑  (?�¸)�P){�  
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         =  ∑ ²³´ µ�¶ ��3Ù¾
�
H)� ! m� + ?� n K
\)P){�  

         =  9!¶ � ∑ �¶~��3�¶���¾

 ! ) !P){�  

 = 9!¶ � �¶~��3

 ! ∑ �¶���¾

 ) !P){�  

 = 9!¶ � �¶~��3

 ! 9¶� � = 

²³´ßµ�¶ ~��3

 ! .⃞ 

 

 

 

3.3.5 Remark: We can interpret the above as follows 

 For a Poisson process �" ����, the probability 
of an occurrence in an infinitesimal interval h is proportional to the length h, 
the proportionality being ¹. Now for �V ����, the probability of a recording in 
the interval h is proportional to the length h, the constant of proportionality 
being λp. Thus �V ���, t ≥ 0 � is a Poisson process with parameter λp. 

3.3.6. Continuation of property 3 

           The number V���� of occurrences not recorded is also a Poisson 
process with parameter λq = λ�1 − K� and V ��� and V���� are independent. 

           Thus by random selection a Poisson process �" ���, t ≥ 0 � of 
parameter λ is decomposed into two independent Poisson process �V ���, t ≥0 � and �V����, t ≥ 0 � with parameters λp and λ  �1 − K� Respectively. 

  

 

 Fig. 3.2  Decomposition rates 

As an example, suppose that the births occur in accordance with a Poisson 
process with parameter λ. If the probability that an individual born is male is p, 
then the male births form a Poisson process with parameter λp and the female 
births form an independent Poisson process with parameter λ�1 − K�.  

     More generally, a Poisson process �" ���� with parameter λ may be 
decomposed into r stream of Poisson processes. If K� +…+ K) = 1 then the 
Poisson process is decomposed into r independent Poisson process with 
parameters ¹K�, ¹K�,…, ¹K) . 
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Theorem 3.3.7.(Poisson process and binomial distribution) 

  If   �" ���� is a Poisson process and s < 1, then 

 Pr  �" �@� = k | " ��� = n � = m�en m%�nT á1 − m%�nâ
!T
. 

Proof: 

  Pr �" �@� = k | " ��� = n � = 
wx �  �%�{ã äåæ   ���{å �wx �  ���{å �  

 = 
wx �  �%�{ã äåæ   ��!%�{å!ã �wx �  ���{å �  

 = 
wx �  �%�{ã �wx �  ��!%�{å!ã �wx �  ���{å �  

 = 
²³´ ç�¶%��T !  . 

²³´ �µ³ç�[¶ ��!%�º3³��
!T� ! ²³´ ç�¶��3
 !è  

 = 

 !T ! �
!T� ! %���!%�3³��3  

 = m�en m%�nT á1 − m%�nâ
!T
 .⃞ 

Theorem 3.3.8: 

If �" ���� is a Poisson process then the auto – correlation coefficient between " ��� and " �� + @� is ��/�� + @��/1 . 

Proof: 

Let ¹ be the parameter of the process; then 

 E �" ���� = ¹T, var �" ���� = ¹T, 

and E �"����� = ¹T + �¹T�� for T = t and t+s. 

Since " ��� and �" �� + @� − " ���� and independent, �" ���, � ≥ 0� being a 
Poisson process, 

 E�" ���" �� + @�� = E[" ����" �� + @� − " ��� +" � 
                                = E [" ���" ���º+ [" ����" �� +@−" � 
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         = E �"����� + E �" ���� E�"�� +@−" � . 
Hence E �"���" �� + @�� = �¹� + ¹���� + λt. ¹s. 

Thus the auto-covariance between "��� :�;" �� + @� is given by 

 C��, � + @� = E �"���" �� + @�� − E �" ���� E�"�� +@  

       = �¹� + ¹��� + ¹��@� − ¹��¹� + ¹@� =  ¹�. 

Hence the autocorrelation function  

 ê��, � + @�= 
ë��,�H%�

�§})  ��� §})  ��H%��/1 

 = *L�/�� + @�M4/1 . 

It can be shown that                                              

 ê��, �£�  =  
ìíåL�,�¨M

���¨�/1  . 

This is the autocorrelation function of the process.⃞ 
Theorem 3.3.9 

 If �"���� is a Poisson process with parameter λ, then �"��� − ¹�, � ≥ 0� is a 
continuous parameter martingale. 

Example 5: 

       A radioactive source emits particles at a rate of 5 per minute in accordance 
with a Poisson process. Each particle emitted has a probability 0. 6 of being 
recorded. The number "��� of particles recorded in an interval of length t is a 
Poisson process with rate 5 × 0. 6 = 3 per minute, i. e. with mean 3t and 
variance 3t. In a 4 – minute interval the probability that the number of particles 
recorded is 10 is equal to 9!���12���/10  ! = 0.104. 

Example 6: 

       A person enlists subscriptions to a magazine, the number enlisted being 
given by a Poisson process with mean rate 6 per day. Subscribers may 
subscribe for 1 or 2 years independently of one another with respective 

probabilities 
�  and 

�  . The number of subscribers "��� enrolled by the person 

in time t days is a Poisson process with mean rate 6t: the number "���� 
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enrolled for 1 – year period is a Poisson process with mean m6 × � n � = 4t and 

the number "���� enrolled for 2 – year period is a Poisson process with mean m6 × � n � = 2t .  

      If the commission  received is : for  1 – year subscription and d for a 2 – 
year subscribtion, then the total commission earned in period t is given by 

 	���= :"���� + d "���� 

We have  E �	���� = :Ã�"����� + dÃ�"����� 
= 4:� + 2d�  

And var 	��� = 4:�� + 2d��. 

3.3.10 Note: The process �	���, � > 0� is a compound Poisson process 

3.5 GENERALISATIONS OF POISSONPROCESS 

There are several directions in which the Poisson process discussed in the 
previous section can be generalized. We consider some of them here. 

3.5.1 Poisson Process in Higher Dimensions 

We have considered so far the one – dimensional case: the occurrences take 
place at random instants of time t (say, ��, ��, …) and thus we were concerned 
with distribution of points on a line. Instead, we may have the two – 
dimensional case. 

Consider the two – dimensional case, such that for the number "�∆:� of 
occurrences in an element of area ∆:, we have, for infinitesimal ∆:, 

 Pr�"�∆:� = 1� = ¹∆: + <�∆:�, 

 Pr�"�∆:� = e� = <�∆:�, e ≥ 2 

and Pr�"�∆:� = 0� = 1 − ¹∆: + <�∆:�, 

Thus, if the number of occurrences in non – overlapping areas are mutually 
independent, the number "�:� of occurrences in an area : will be a Poisson 
process with mean ¹:. Here in place of one – dimensional t, we consider two – 
dimensional :. Similarly, we can describe Poisson process in higher 
dimensions. 
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3.5. 2 Poisson Cluster Process (Compound or Cumulative Poisson 
Process) 

Discrete Case 

We considered in that only one event can occur at an instant of occurrence. 
Now let us suppose that several events can happen simultaneously at such an 
instant, i. e. we have a cluster(of occurrences) at a point. We assume that: 

           (i) The number "��� of clusters in time t, i. e. the points at which 
clusters occur constitute a Poisson    process with mean rate λ. 

           (ii) Each cluster has a random number of occurrences, i. e. the number 	$ of occurrences in 6�� cluster is a. r. v. The various numbers of occurrences 
in the different clusters are mutually independent and follow the same 
probability distribution: 

 Pr�	$ = e� = (T, e = 1, 2, 3, …. 
   6 = 1, 2, 3, … .. 
Having p. g. f. (�@� = ∑ KT@TPT{� . 
Theorem 3.5.3 

         If V��� denotes the total number of occurrences in an interval of length t 
under the conditions (i) and (ii) stated above, then the generating function of V��� is given by 

 ïL(�@�M = exp [¹� �(�@� − 1�]. 
Proof:V��� is the sum of a random number of terms, i. e. 

 V��� = ∑ 	$ ���${�  , 

Where If "��� is a Poisson process with mean¹�. 

Now (�@� is the p. g. f. of 	$ and ï�@� is the p. g. f. of ��� . Thus, 

 ï�@� = 90K�¹��@ − 1��. 
Hence by the p. g. f. of V��� is given by 

 ï�(@� = 90K�¹�(�@� − 1�.⃞ 
3.5.4 Note: 
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              (I) V��� is called a compound Poisson process It is to be noted that V��� is not necessarily Poisson. Poisson cluster process arise in bulk queues, 
where customers arrive or are served in groups. 

              (ii) A compound Poisson process is not a point process; it is what is 
called a jump process. 

              (iii) Suppose that claims against a company occur in accordance with 
aPoisson process with mean ¹�, and that individual claims 	$ are i. i. d. with 
distribution �KT�, then V��� represents the total at epoch t. If a represents 
initial reserve and = the rate of increase of the reserves in the absence of 
claims, then the total reserve at epoch t is ¸ + =� − V���, and negative reserve 
implies ‘ruin’. 

3.5.5Continuous  Case 

Now suppose that non – negative variables 	$ are continuous having d. f. ��0� = Pr�	$ ≤ 0�,p. d. f. f(x), and L. T.   

 7∗�@� = Ì 9!%Å7�0�;0P�  

Then, it can be shown (as before) that the L. T. of 	��� is given by 

 Ã*expL−@	���M4 = exp [¹��7∗�@� − 1�] 
	��� is known as a continuous compound Poisson process. By compound 
Poisson process, we shall generally mean (discrete) compound Poisson 
process. 

The L. T. of �	��� > 0� is given by 

 Ì 9!%ÅP� Pr�	��� > 0� ;0 = �!ôõö �¶��÷∗�%�!���%  

3.5.6. Compound Poisson process and linear combination of independent 
Poisson processes: 

Consider Example 6. 

The process 	��� = :"���� + d"���� is a linear combination of two 
independent Poisson processes. The process can also be expressed as the 
compound Poisson process 

 	��� = ∑ 	$ ���${�  

where 	$, the amount of commission received form a subscription, is a random 
variable such that  
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  Pr�	$ = :� = �  :�; Pr�	$ = d� = �  . 

If follows that 

And ¡:?�	���� = 6� Ã�	$�� = 6�. � . �2:� + d�� =4:�� + 2d��. 

The two approaches are equivalent. The result may be stated in a more general 
form as follows:  

Let :T > 0, e = 1, 2, … , ?�≥ 2� :�; Pr�	$ = :T� = KT  7<? 9:=ℎ 6, ∑ Ke = 1. 

Then 	��� = ∑ 	$ ���${� , where �"���� is a Poisson process with parameter ¹, is 

a compound Poisson process. For � > 0, A9� "$ ��� be the number of jumps of 
value :$ for the process �	���� which occur prior to t, Then we have 

 	��� = :�"���� + ⋯ + :)")  ��� 

,where �"T���, � ≥ 0� is a Poisson process with parameter ¹KT :�; "����, … , ")  ��� are mutually independent. "��� is decomposed into 
r independent Poisson processes "T���, e = 1, 2, … . , ?. 

Example 9. 

            Customers arrive at a store in groups consisting of 1 or 2 individuals 
with equal probability and the arrival of groups is in accordance with a 
Poisson process with mean rate ¹. 

Here KT = Pr�	$ = e� = �� �7<? e = 1, 2� 

   = 0�<�ℎ9?X6@9�; 

Hence (�@� = ∑ KT@T = �� @ + �� @�T   

And so the generating function of V���, the total number of customers arriving 
in time t is 

 ï�@� = exp �¹� r�� �@ + @�� − 1s�. 
The mean number of customers arriving in time t equals Ã�	$��¹�� = � ¹�.  �<?¹ = ��per minute and t=4 minutes, the generating function will be 

 exp r2 ��� �@ + @�� − 1�s = �exp�−2�� �exp �@ +@���, 
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And the probability that the total number of arrivals is exactly 4 is 

 9!� m �h ! + �� ! + �� !n = 0. 141. 
 

Example  10. 

          Suppose that the number of arrival epochs in an interval of length t is 
given by a Poisson process �" ���, � ≥ 0� with mean : and that the number of 
units arriving at an arrival epoch is given by a zero – truncated Poisson 
variable	$, 6 = 1, 2, … with parameter¹. Then the total number V��� of units 
which arrive in an interval of length t is a Poisson cluster process with p. g. f. 

 ïL(�@�M = exp [:��(�@� − 1�] 
Where P(s) is the p. g. f. of zero – truncated Poisson process namely 

 (�@� = �90K¹ − 1�!��exp�¹@� − 1�. 
Hence ïL(�@�M = exp r:� ��ôõö�¶%�!���²Å~¶!�� − 1�s. 
Example 11. ( An application in inventory theory) 

 Suppose that 	$ are i. i. d. decapitated geometric r. ¡.£ @ such that 

 (?�	$ = e� = \T!�K, e = 1, 2, 3, … , Xℎ9?9  K +\ = 1 

Then the generating function of 	$  is , ï�@� = K@/�1 − \@�, 

                     and L(�@�M = exp[¹��K@/�1 − \@� − 1�]. 
From the function G(s), we getK� ≡ (?�V��� = 0� = 9!¶� 
        KT ≡ (?�V��� = e�6@ Ç6¡9� dÎ 

 KT = ~¶�T ∑ \J!�ITJ{� KT!J ,          e ≥ 1. 
3.5.7. Remark:Several authors have used this as a model for lead time 
demand of a commodity. It has been shown that this distribution fits actual 
data for demand of units of an EOQ or consumable type inventory item during 
stock replenishment or lead time. 
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UNIT IV 

 BIRTH AND DEATH PROCESS AND 
CONINUOUS TIME MARKOV CHAIN 

                  4.1 Introduction 

                  4.2 Birth-Death Process 

                  4.3 Continuous Time Markov Chain 

  

4.1 Introduction 

A stochastic process whose state space moves back and forth by unit measure 
in state space is called Birth-Death process. A simple example for birth –death 
process is the queuing system in which arrival customer to the counter is a 
birth and the service completion in a server is equivalent to death event. 
Inventory control system with one for –one ordering policy is also an example 
for Birth- Death process. In this unit we study the pure birth and pure death 
process together with Birth-Death process.  

4.2 Birth –Death Process 

4.2.1 Pure Birth- Death Process:  

   First we  considera pure birth process, where (? { Number of births between 
t and t+h is k, given the number of individuals at epoch t is n} 

Is given by  K�e, ℎ |�, �� = ø¹
ℎ + <�ℎ�,                  e = 1 <�ℎ�,                             e ≥ 21 − ¹
ℎ + <�ℎ�,         e = 0.G
  (4. 1) 

The above holds for all � ≥ 0; ¹� may or not be equal to zero. Here k is a non 
– negative integer which implies that there can only be an increase by k, i. e. 
only births are considered possible. Now we suppose that there could also be a 
decrease by k, i. e. death(s) is also considered possible. In this case we shall 
further assume that 

(? { Number of births between t and t+h is k, given the number of individuals 
at epoch t is n} 
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Is given by  \�e, ℎ |�, �� = ø �
ℎ + <�ℎ�,                 e = 1 <�ℎ�,                             e ≥ 21 − �
ℎ + <�ℎ�,          e = 0.G
  (4. 2) 

The above holds for � ≥ e; further�� = 0,Which  is known as a birth and 
death process. Through a birth there is an increase by one and through a death, 
there is a decrease by one in the number of “individuals”. The probability of 
more than one birth or more than one death in an interval of length h is <�ℎ�. 
Let "��� denotes the total number of individuals at epoch t starting from� = 0 
and letK
��� = (?�"��� = ��.Consider the interval between 0 and � + ℎ; 
suppose that it is split into two periods �0, ��:�; [ �, � + ℎ]. The event �"�� + ℎ� = �, � ≥ 1�, (having probability  K
�� + ℎ� can occur in a number 
of mutually exclusive ways. 

         These would include events involving more than one birth and / or more 
than one death between t and +ℎ . By our assumption, the probability of such 
an event is <�ℎ�. There will remain four other events to be considered: 

¸$J ∶ �� − 6 + I� individuals by epoch �, 6 birth and I death between t and � + ℎ, 6, I = 0, 1. 
We have (?�¸��� = K
����1 − ¹
ℎ + <�ℎ���1 − �
ℎ +<�ℎ� 

  = K
����1 − �¹
 + �
�ℎ + <�ℎ��; 
 (?�¸��� = K
!�����¹
!�ℎ + <�ℎ���1 − �
!�ℎ +<�ℎ� 

  = K
!����¹
!�ℎ + <�ℎ�; 
 (?�¸��� = K
!�����1 − ¹
H�ℎ + <�ℎ����
H�ℎ +<�ℎ� 

  = K
H�����
H�ℎ + <�ℎ�;   
and (?�¸��� = K
����¹
ℎ + <�ℎ����
ℎ + <�ℎ�� 
   = <�ℎ�. 
Hence we have, for n ≥ 1 

K
�� + ℎ� = K
����1 − �¹
 + �
� + ℎ� + K
!����¹
!�ℎ + K
H�����
H�ℎ +<�ℎ� (4.3 ) 
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Or          
~3��H��!~3���� = −�¹
 + �
�K
��� + ¹
!�K
!���� + �
H�K
H���� +

b���� .  
And taking limits, as ℎ → 0, we have 

K
£ ��� = −�¹
 + �
�K
��� + ¹
!�K
!���� + �
H�K
H����, � ≥ 1.  (4. 
4) 

For � = 0, we have 

K��� + ℎ� = K�����1 − �¹�ℎ + <�ℎ�� + K�����1 − �¹�ℎ + <�ℎ����
ℎ +<�ℎ�    (4.5) 

 = K���� − ¹�ℎK���� + �
ℎK���� 

or                   
~| ��H��! ~|���� = −¹�K���� + ��K���� + b����  

Taken limit as h→ 0, we get  

 K�£ ��� = −¹�K���� + ��K����   (4. 
6) 

If at epoch� = 0, there were 6�≥ 0� individuals, then the initial condition is 

 K
�0� = 0, � ≠ 6, K$�0� = 1.   (4. 
7) 

The above equations (4. 4) and (4. 6) are the equations of the birth and death 
process. The birth and death processes play an important role in queuing 
theory. They also have interesting applications in diverse other fields such as 
economics, biology, reliability theory etc. 

4.2.2 REMARKS: 

          The result about existence of solutions of (4. 4) and (4. 6) is stated 
below without proof. For srbitrary  

¹
 ≥ 0, �
 ≥ 0, there always exists a solution K
����≥ 0� such that ∑K
(�) ≤
1. If  ¹
 , �
 are bounded, the solution is unique and satisfies ∑K
(�) = 1. 

4. 2. 3 BIRTH AND DEATH RATES 

                   Some particular values of ¹
 :�; �
 are of special interest.  When 
¹
 = ¹, 6. 9.  ¹
 is independent of the population size n, then the increase may 
be thought of as due to an external source such as immigration. When ¹
 =
� ¹, we have case of (linear) birth; ¹
ℎ = �¹ℎ may by considered as the 
probability of one birth in an interval of length h given that n individuals are 
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present (at the instant from which the interval commences)the probability of 
one individual giving a birth being ¹ℎ, (i. e. rate of birth in unit interval is ¹ 
per individual).  Here ¹� = 0. 
           When�
 = �,  the decrease may effected due to the emigration 
factor.When,�
 = ��,  we have the case of death, the rate of death in unit 
interval being � per individual. 

Particular Cases 

I. Immigration – Emigration Process 

For ¹
 = ¹ :�; �
 = � we have what is known as immigration – emigration 
process. The process associated with the simple queuing model V/V/1 in 
such a process. 

II. Linear Growth Process 

      (a)Generating Function: 

IN the Yule –Furry process one is concerned with a population whose 
members can give birth only but cannot die. Let us consider the case where 
both births and deaths can occur. Suppose that the probability that a member 
gives birth to a new member in a small interval of length h is ¹ℎ + <�ℎ� and 
the probability that a member dies  is �ℎ + <�ℎ�. Then, if n members are 
present at the instant t, the probability of one birth between t and � + ℎ is  �¹ℎ + <�ℎ� and that of one death is �ℎ + <�ℎ�, � ≥ 1. 
We have thus a birth and death process with 

 ¹
 = �¹, �
 = ��� ≥ 1�, ¹� = �� = 0. 
If 	��� denotes the total number of members at time t, then from (4. 4) and (4. 
6) we have the following differential – difference equations for K���� =Pr�	��� = ��: 
K
£ ��� = −��¹ + ��K
��� + ¹�� − 1�K
!���� + ��� + 1�K
H����, � ≥ 1              
(4. 8) 

  K
£ ��� = �K����. 

If the initial population size is 6, i. e. 	�0� = 6, then we have the initial 
condition K$�0� = 1 and            K
�0� = 0, � ≠ 6. 
Let (�@, �� = ∑ K
���@
P
{�                         be the p. g. f. 
of �K
����. 
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Then 
¼�¼% = ∑ nK
���@
!�P
{�        and 

¼�¼� =∑  K
£ ���@
P
{�  . 

Multiplying (4. 8) by @
 and adding over � = 1, 2, 3, …. and adding (4. 9) 
thereto, we get 

 
¼�¼� = −�¹ + �� ∑ �K
���@
P
{� + ¹ ∑ �n −P
{�1� K�−1�@� 

 = +��∑ �n + 1�K
H����@
 + K
���P
{� � 
 = −�¹ + ��@ ¼�¼% + ¹@� ¼�¼% + � ¼�¼% 

 = �ú − �¹ + ��û + ¹@�� ¼�¼% . 
(�@, �� thus satisfies a partial differential equation of Lagrangian type. We 
shall not discuss here the method of solution; the solution with the initial 
condition 	�0�6. Is given by 

 (�@, �� = r���!%�!��!¶%� ²³�´³ü�µ
¶��!%�!��!¶%�²³�´³ü�µ s$

 

 = ©�*�! ²³�´³ü�µ4! *� ! ¶²³�´³ü�µ4%*¶! � ²³�´³ü�µ4 !¶ *�! ²³�´³ü�µ4%ª$
  

 (4. 11) 

Explicit expression for K
��� can be obtained from the above by expanding (�@, �� as a power series in s. 

       (b) Mean Population Size: 

We can obtain the mean population size by differentiating(�@, �� partially with 
respect to s and putting s=1. It can however be obtained directly form (4. 8) 
and (4. 9) without obtaining (�@, �� as follows: 

Let Ã�	���� = V��� = ∑ nK
���P
{�  

and Ã�	����� = V���� = ∑ n�K
���P
{� . 

Multiplying both sides of (4. 8) by n adding over for � = 1, 2, 3, …, we have 

∑ nK
£ ���P
{� = −�¹ + �� ∑ n�K
���P
{� + ¹ ∑ n�n − 1�P
{� K
!���� +� ∑  ��n + 1�K
H���� .P
{�     (4. 12) 

Now                         ∑ n�n − 1�P
{� K
!���� = ∑ �n − 1��P
{� K
!���� +∑ �n − 1�P
{� K
!���� 
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   = V���� + V���; 
ý n�n + 1�P

{� K
H���� = ý�n + 1��P


{� K
H���� − ý�n + 1�P

{� K
H���� 

   = �V���� − K����� − �V��� − K����� 
   = V���� − V ���; 
And ∑ nK£��� = V£���.P
{�  

Hence from (4. 12) we get  

V£��� = −�¹ + � � V���� + ¹�V���� + V���� + ��V���� − V���� 
= �¹ + � �V���. 

The solution of the above differential equation (that M(t) satisfies) is easily 
found to be 

 V ��� = ∁9�¶!��� 
The initial condition givesV�0� = ∑ �K
�0� = 6, Xℎ9�=9 ∁= V�<� = 6.P
{�  

We have therefore, 

 V��� = 69�¶!��� . 
The second moment V���� <7 	��� can also be calculated in the same way. 

Limiting case: 

       As � → ∞, the mean population size V��� tends to 0 for ¹ < � (birth rate 
smaller than death rate) or to ∞ for ¹ < � (birth rate greater than death rate) 
and to the constant value I when ¹ = �. 

(c) Extinction Probability: 

                  Since ¹� = 0, 0 is an absorbing state, i. e. once the population size 
reaches 0, it remains at 0 thereafter. This is the interesting case of extinction of 
the population. We can determine the probability of extinction as follows: 

Suppose, for simplicity, that 	�0� = 1, 6. 9. the process starts with only one 
member at time 0. Then from (4.11) we can write (�@, �� as 

 (�@, �� = }!�%�!Õ% = }� . �!�%/}�!Õ%/� 

Where : = � *1 − 9!�¶!���4 
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And = = ¹ − �9!�¶!��� 
(?�	��� = 0� = K����, the constant term in the expression of (�@, �� as a 
power series in s, is given by 

 
}� = ���!²³�´³üµ��¶!�²�´³ü�µ  . 

The probability that the population will eventually die out is given by lim K���� as � → ∞ and can be obtained from the above by letting � → ∞. 

If ¹ > �, then A6��→P K���� = A6��→P ���!²³�´³ü�µ�¶!�²³�´³ü�µ  

  = �¶ < 1. 
If ¹ < �, then A6��→P K���� = A6��→P � ��!²³�´³ü�µ�¶!�²³�ü³´�µ = 1. 
And A6��→P K
��� = 0 for � ≠ 0. 
In other words, the probability of ultimate extinction is 1 when � < ¹ and is  �¶ < 1 when � < ¹. 
III . Linear Growth Immigration  

                In II, we have ¹� = 0 and, as a result, if the population size reaches 
zero at any time, it remains at zero thereafter. Here 0 is an absorbing state. If 
we consider ¹
 = �¹ + +�+ > 0�, �
 = ���� ≥ 0� we get what is known as a 
linear growth process with immigration, where 0 is not an sbsorting state. 

IV . Immigration – Death Process 

                If ¹
 = ¹ and �
 = ��, we get what is known as an immigration – 
death process. This corresponds to the Markovian queue with infinite number 
of channels, i. e. the queue V/V/∞. 
V. Pure Death Process 

              Here ¹
 = 0 for all n, i. e. an individual cannot give birth to a new 
individual and the probability of death of an individual in ��, � + ℎ�is �ℎ +<�ℎ�.  Then , if  n individuals are present at time � , the probability of one 
death in ��, � + ℎ� is  ��ℎ + ��ℎ�. 

 The birth and death process is a special case of 
continuous time Markov process with discrete state space f = �0,1,2, … … � 
such that the probability of transtition from i to j in ∆� time is �∆� ) whenever 
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|6 − I| ≥ 2. In other words changes takes place through transitions only from a 
state to its immediate neighboring state. 

4.3Continuous Time Markov Chains: 

4.3.1 Definition 

                A continuous time parameter MARKOV process �	���: � ≥ 0� with 
discrete state space " = �0,1,2 … . . �  is considered for this section. Assume 
that  �	���: � ≥ <� 6@ : �6�9 homogeneous Markov chain.  

So the probability of a transition from state I to state j during the time interval ��, � + �� does not depend on the initial time T,  but depends only on the 
elapsed time t and on the initial and terminal states I and j. We can thus write 

 (?�	�� + �� = I | 	��� = 6� = K$J���, 6, I =0, 1, 2, … ,      � ≥ 0. 
In particular, we write (?�	��� = I | 	�0� = 6� = K$J���, 
From the definition of transition probability distribution, we have0 ≤ K$J��� ≤1 for each 6, I, �, 
and∑ K$J��� = 1.J  

LetKJ��� = (?�	��� = I � be the state probability at epoch j, then 

 KJ��� = (?�	��� = I � 
  = ∑ (?�	��� = I :�; 	�0� = 6 �$  

  = ∑ (?$ �	�0� = 6� (?�	��� = I | 	�0� = 6 � 
  = ∑ (?$ �	�0� = 6�K$J���. 
Now we have ∑ KJ��� = 1J  for � ≥ 0. 

Let us denote the transition probability matrix  of the Markov Chain by 

 (��� = mK$J���n. 

SettingK$J�0� = �$J, we get,  (�0� = Û.  Also  assume here that the functions K$J��� are continuous and differentiable for � ≥ 0. 
4.3.2 The waiting time for a change of state: 
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                 Suppose that �	���: � ≥ < is a homogeneous Markov process and 
that at time�� = 0,the state of the process 	���� = 	�0� = 6 is known. The 
time taken for a change of state I is a random variable, say �. This random time 
period � is called the waiting time to reach a different  state from state i. 

 We have                   (?�� > @ + � | 	�0� = 6� 
   = (?{� > @ + � | 	�0� = 6, � >
@ (?�>@ | 	0=6 
  = (?{� > @ + � | 	�@� = 6, � (?{� > @ | 	�0� =
6. 
If we denote ���� = (?{� > �  | 	�0� = 6�, � > 0 then the above can be 
written as 

 ��@ + �� = ��@�����, 7<? @, � > 0. 
The above relation is satisfied 67   ���� is the form9!¶�, � > 0, ¹ > 0. 
Thus the waiting time � has an exponential distribution with parameter ¹, 
which is called the transition density from state i. The distribution function is 
the same for all i. 

4.3.3 Chapman – Kolmogorov Equations: 

 The transition probability K$J�� + �� is the 

probability that the given state was I at epoch 0, it is in  state j at epoch � + �; 
but in passing from state 6 to state I in time �� + �� the process moves through 
some state k in time t, Thus 

K$J�� + �� = ý (?{	�� + �� = I, 	��� = e | 	�0� = 6 �
$

 

 =
∑ (?{	�0� = 6, 	��� = e, 	�� + �� = I �$  Pr {	�0� = 6�⁄  

 =
∑ *�){y���{$,   y���{T�4

wx {y���{$�T  × �){y���{$,   y���{T,   y��HÖ�{J�
wx {y���{$,   y���{T�  

 = ∑ (?{	��� = e | 	�0� = 6�$ Pr{ 	�� + �� =
I 	0=6,  	�=e�. 
Since {	���: � ≥ 0� is a Markov process, 

 Pr{ 	�� + �� = I | 	�0� = 6, 	��� = e� 
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   = Pr� 	�� + �� = I |  	��� = e� 
   = K$J���. 

Hence we get the probabilistic relation 

 K$J�� + �� = ∑ K$T���$ KTJ���, for all states 6, I :�; � ≥ <, � ≥ 0.     (4.5)  

Above equation (4.20) is called Chapman- Kolmogorov equation. 

4.3.4 Remark: 

  We can also write Chapman –Kolmogorov equation in matrix form: 

(�� + �� = (���. (���.       (4.6) 

The equations 4.5 and 4.6 are also equivalent to the relation we already proved 
an the case of  Discrete Markov Chains. 

Denote the right – hand derivative at zero by 

 :$J = ÕÕ� K$J���|�{� ;  6 ≠ I   

                             (4. 7) 

 :$J = ÕÕ� K$$���|�{� . 
Then :$J = A6�∆�→� ~Ð��∆�� ! ~Ð� ���∆�  = A6�∆�→� ~Ð��∆��∆�  

or K$J�∆�� = :$J�∆�� + <�∆��, 6 ≠ I  

   (4.8) 

and :$$ = A6�∆�→� ~ÐÐ�∆�� ! ~ÐÐ ���∆�  = A6�∆�→� ~ÐÐ�∆��!� ∆�  

   

or  K$J�∆�� = 1 + :$J�∆�� + <�∆��.   

  (4.9) 

It can be seen from the above relations that :$J ≥ 0, 6 ≠ I :�; :$$ < 0. 
From   ∑ K$J��� = 1,   >@6�ÇJ �4.7�, X9 Ç9� 

   ∑ :$J = 0J  

   ∑ :$J = −:$$ .J�$      

  (4.10) 
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The quantities :$J are called transition densities and the matrix 

    ¸ = �:$J� 

Is called the transition density matrix or rate matrix of the process. The matrix 
is such that 

 (1) its off – diagonal elements are non- negative and the diagonal 
elements are negative; 

 (2) the sum of the elements of each row is zero, the sum of the off – 
diagonal elements being equal in          magnitude but opposite in sign to the 
diagonal elements being elements. 

Differentiating (4.5) with respects to T, we get 

   K$J£ �� + �� = ¼¼Ö K$J�� + �� = ∑ K$T��� ÕÕÖ KTJ���T . 

Putting T=0, we get K$J£ ��� = ∑ K$T���:TJT .    

  (4.11) 

Or, in matrix notation (£��� = (���¸.     
  (4.11a) 

Similarly we can get 
ÕÕÖ K$J��� = ∑ K$TKTJ���T . 

Replacing T by t, we can write this as  

    K$J£ ��� = ∑ K$TKTJ���T     

  (4.12) 

or    (£��� = ¸(���.    
   (4.12a) 

Equations (4.11) and (4.12) which give Chapman – Kolmogorov equations as 
differential equations are called respectively Forward and Backward 
Kolmogorov equations. 

Solution of the Equations for a Finite State Process 

When the rate matrix is given, the equations (4.11) or (4.11a) together with the 
initial conditions K$J = �$J�<? (�0� = Û� yield as solution the unknown 

probabilities K$J���. We consider below a method of solution for a process 

with finite number of states. From (4.11a) we see at once that the solutions can 
be written in the form 
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    (��� = (�0�9�� = 9��   
   (4.13) 

Where the matrix  9�Ö = Û + ∑ �3�3

 !P
{�     

  (4.13a) 

Assume that eigenvalues of A are all distinct. Then from the spectral theorem 
of matrices, we have 

    ¸ = ���!� 

Where H is a non – singular matrix and D is the diagonal matrix having for its 
diagonal elements the eigenvalues of A. Now, 0 is an eigenvalue of A and if ;$ ≠ 0, 6 = 1, … , � are the other distinct eigenvalues, then 

    � =
YZ
ZZ
[ 0     0    …      00     ;$     …       0…           …    ……           …    …0    0     …  ;N _̀

`̀
a. 

We then have    

    �
 =
YZ
ZZ
[0        0    …      00     ;�
     …       0…             …     ……            …     …0    0     …   ;N
 _̀

`̀
a
 

And    ¸
 = ��
�!� 

Substituting in (4.13), we get  

    (��� = Û + ∑ L�	3�³/M�3

 !P
{�  

     = � �Û + ∑ 	3�3

 !P
{� ��!� 

     = �9	��!� 

Where     9	� =
YZ
ZZ
[ 0           0        …        00           9Õ/�      …          0.           .            …          ..           .            . . .          .   0           0        …      9Õz� _̀

`̀
a
 

The right – hand side of (4.14) gives explicit solution of the matrix (���. Note 
that even in the general case when the eigenvalues of A are not necessarily 
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distinct, a canonical representation of ¸ = f#f!� exists. Using this, ((�) can 
be obtained in a modified form. 

Example 5(a):  Poisson process: 

If events occur in accordance with a Poisson process "(�) with mean ¹�, then
  

 K$ ,$H��∆�� = (?{the process goes to state i+1 from state I in time ∆� } 

  = Pr {one event occurs in time ∆� } 

  = Pr �"�∆�� = 1� 
  = ¹∆� + <�∆��, 
 K$ ,$�∆�� = 1 − ¹∆� + <�∆�� 

and K$ ,J�∆�� = <�∆��, I ≠ 6, 6 + 1. 
By comparing with (4.8) and (4.9), we have 

   :$ ,$H� = ¹, :$ ,$ = −¹, :$ ,J = 0 7<? I ≠ 6, 6 + 1.  
The rate matrix is ̧ = L:$JM = � −¹     ¹     0    …      00    − ¹     ¹    …      0…                      …        � 
The Kolmogorov forward equations are 

    K$,$£ ��� = −¹K$ ,$��� 

    K$,$£ ��� = −¹K$ ,$��� + ¹K$ ,$!����, I = 6 + 1, 6 +2, ….  (4.15) 

Let KJ��� = Pr�"��� = I � :�; K��0� = 1, K
�0� = 0, � ≠ 0. Using (4.2) we 

get KJ��� ≡ K�J���, I = 0,1,2 … Thus (4.15) become identical with (1.11) and 

(1.12) so that KJ��� = 9!¶��¹��$/I !  Similarly. With K$J�0� = 1, I =6, K$J�0� = 0, 6 ≠ I,  we get  

     K$J��� = ²³ ´µ� ¶���³Ð
�J!$�! . 

Example 5(b) Two – state process: 

 Suppose that a certain system can considered to be in two states: 
“Operating” and “Under repair”. Suppose that the lengths of operating period 
and period under repair are independent random variables having negative 



 

65 

 

exponential distribution with means 
��  :�; �} respectively (a, b>0). The 

evolution of the system can be described by a Markov process with two states 
0 and 1. 

Now  
 K���∆�� = Pr �=ℎ:�Ç9 <7 @�:�9 7?<� 0 �< 1 6� �6�9∆�� 
    = Pr �?9K:6? d96�Ç =<�KA9�9; 6� �6�9∆�� 
    = :∆� + <�∆�� 

And   K���∆�� = Pr �=ℎ:�Ç9 <7 @�:�9 7?<� 1 �< 0 6� ∆�� 
    = d∆� + <�∆��. 

Thus the transition densities are  

   :�� = :,  :�� = d 

And   :�� = −:,  :�� = −d 

So that   ¸ = r−:          :d        − ds. 
The Kolmogorov forward equations, for 6 = 0, 1, are 

   K$�£ ��� = −: K$���� + d K$���� 

   K$�£ ��� = : K����� − d K$����. 

Now we proceed to find the transition probabilities  K$J���. 

Using   K����� + K����� = 1, K����� + K����� = 1, 
We get   K��£ ��� = −�: + d�K����� = d 

And   K��£ ��� = +�: + d�K����� = :. 

The solution of the first of these differential equation is 

   K����� = �}H� + »9!�}H��� . 
With   K���0� = 1, X9 Ç9� » = }}H�, so that 

   K����� = �}H� + }}H� 9!�}H��� . 
Hence   K����� = 1 − K����� = }}H� − }}H� 9!�}H��� . 
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Similarly, the solution of the second differential equation with initial condition K��(0) = 1, gives 

   K����� = }}H� − }}H� 9!�}H��� . 
and hence  K����� = 1 − K����� 

    = �}H� − �}H� 9!�}H��� 
Let KJ��� be the probability that the system is in state j at time �, I =0, 1, :�; A9� K��0� = 1, K
�0� = 0, � ≠ 0.  Then KJ��� ≡ K�J���, I = 0, 1. 
4.3.5 Alternative Method: 

 We consider the above example to show how to proceed with matrix 
method of solution: this method is useful when Kolomogorov differential 
equations are easily solvable. 

Here ¸ = r−:        :d   − d s has eigenvalues 0 and −�: + d�, corresponding right 

eigenvectors being �1,1�, and  

�: − d�, respectively. The Kolmogorov forward equation  

    (£��� = �K$J£ ���� = (���¸ 

Has as solution (as given in (4.14)) 

    (��� = �9	����!�    
  (4.16) 

Where    � = r1        :1   − ds 
And    �!� = �}H� rd        :1   − 1s 
The diagonal matrix D whose elements are the eigenvalues of A is 

    � = ©0                         00        − �: + d�ª 
So that    9	��� = r 1                  0     0           9!�}H���s . 
Thus from (4.16) 

   

 (��� = r1        :1   − ds r 1                  0     0           9!�}H���s rd        :1   − 1s [�: + d�]
  



 

67 

 

    = �}H� ©d +  :9!�}H���              : − : 9!�}H��� d − d 9!�}H���              : + d9!�}H���ª 
We have   K����� = �}H� + }}H� 9!�}H���,  K����� = 1 −K����� 

And     K����� = }}H� + �}H� 9!�}H���,  K����� = 1 −K����� 

4.3.6 Limiting Distribution (Ergodicity of Homogeneous Markov Process) 

We recall the result on limiting distribution of certain types of Markov chains 
as given  in  Previous Theorems. we recall: 

   ¢�( − Û� = 0, ¢ = �¡�, ¡�, … . �, ¢9 = 1  
 (4.17) 

A similar elegant result holds for continuous parameter Markov processes as 
well. We shall state the result without proof. Here similar definitions for the 
classification of the states will be used. 

Theorem  4.3.7 

Suppose that the time – homogeneous Markov process �	���� is irreducible 
having aperiodic non – null persistent states; also that its t. p. m. is (��� =mK$J���n , 6, I = 0, 1, 2, … and the matrix of transition densities (or rate matrix) 

is 

    ¸ = �:$J�, 

Where    :$J = K$J£ ���| �{� . 
Then given any state j,   A6��→P K$J��� = ¡J   

   (4.18) 

Exists and is the same for all initial states 6 = 0, 1, 2, … The asymptotic values ¡J represent a probability distribution, i. e.  0 ≤ ¡J ≤ 1, ∑ ¡J = 1.J  

The values ¡J can then be determined as solutions of the system of linear 

equations 

     ∑ ¡J:$J = 0.  I = 0, 1, 2, …J   

  (4.19) 

or in matrix notation,  ¢¸ = 0, ¢ = �¡�, ¡�, … �   
  (4.19a) 
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by using the normalizing condition ¡9 = 1, �ℎ:� 6@, ∑ ¡J = 1.J  

Note1:  The eq. (4.19) can be obtained from the forward Kolmogorov eq. 
(5.11) by putting 

    A6��→P K$J��� = ¡J  , :�; A6��→P K$J£ ��� = 0.  
Note2: The eqs. (4.17) and (4.19a) for discrete and continuous parameter 
processes respectively are similar in structure. The matrices �( − Û� and A 
both have non – negative off – diagonal elements, strictly negative diagonal 
elements and zero row sums. If the number of states are finite, say, m, then 
both �( − Û� and A are of rank �� − 1�. Then V can be easily determined 
from any of the �� − 1� equations (out of m equations) contained in the 
relations (4.17) and (4.19a) and the normalizing condition ∑ ¡J = 1.J  

 

Example 5(c): 

Consider the two – state process given Example 5(b). Here 

   ¡� = A6��→P K����� = A6��→P K����� = ��}H�� 
and   ¡� = A6��→P K����� = A6��→P K����� = }�}H�� . 
These limiting probabilities can also be obtained from the equations (4.19) 
which become 

   −:¡� + d¡� = 0 

   :¡� − d¡� = 0. 

Here there are two states and so the matrix A is of rank 1 and the two 
equations are equivalent. Each of them yields ¡� = �:/d�¡�. Using the 
normalizing condition ¡� + ¡� = 1, we get 

   ¡� = ��}H�� , ¡� = }�}H�� . 
When the number of states is finite and when only the limiting probabilities ¡J 

are needed it is easier and more convenient to determine them from (4.19) or 
(4.19a). 

Example5(d):  

 Consider  a M/M/m  queuing system which has m service channels, the 
demand for service arises in accordance with a Poisson process with parameter 
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:. Suppose that the service time in each channel is exponentially distributed  
with parameter d. Further assume  that there is no waiting space facility, in the 
sense that a demand which is received when all the m channels are busy is 
rejected and leaves the system. This system is called a Erlang loss system. 

  . Describe  a Markov process�	���, � ≥ 0�, where 	��� denotes 
the number of busy channels at time t; it has (m+1) states 0, 1,…,m . Suppose 
that the system is in state e, �ℎ9� it implies that k channels are busy.  The 
transition probabilities of the Markov process  are given by 

   K$,$H��∆�� = (?{one demand is received for processing 

in time ∆�} 
    = :∆� + <�∆��,       0 ≤ 6 ≤ � 

   K$,J�∆�� = <�∆��, I > 6 + 1. 

(?{one service completion occurred in time ∆� } 
    = d∆� + <�∆��.       
Suppose  I channels are working(?{one service demand is met in time ∆� }  = 6d∆� + <�∆��,       
i. e.    K$,$!��∆�� = 6d∆� + <�∆��  

and   K$J�∆�� = <�∆��, I < 6 − 1. 
Thus   :�� = : :�� = −: 

  G :$J     = 6d,                    I = 6 − 1   = : ,            I = 6 + 1                =  −  �: + 6d�,        I = 1      �1 ≤ 6 < � 

  :N,N!� = �d, :N,N = −�d 

  ¸ =
YZ
ZZ
[ −:               :                 0                0    …       0           0  d     − �: + d�               :              0     …       0           0 0                2d  − �: + 2d�        :       …       0           0…              …            …               …       …     ….        … 0               0                  0             0      …      �d  − �d _̀

`̀
a
 

The equations (4.19) becomes 

    −:¡� + d¡� = 0 

  :¡J!� − �: + Id�¡J + �I + 1�d¡JH� = 0,             I =1, 2, … , � − 1 



 

70 

 

     :¡N!� − d�¡N = 0. 

The solution of these equations can be obtained recursively, from the equation

 ¡� = m}�n ¡�. 

Writing the second equation with I = 1 and putting there this value of ¡�, we 

get¡� = �� m}�n� ¡�. 

Proceeding in this way, we get   

    ¡J = m �J !n m}�nJ ¡�,    I = 0, 1, 2, … , �. 
From the total probability condition      ∑ ¡J = 1,NJ{�  one gets ¡� =�
á∑ m /Ð !nm�


nÐz��| â . 

Formulas giving ¡J are called Erlang’s formulas. 

Note : The probability that a demand is rejected (lost) is given by 

   ¡N = m�
nz 
z !

∑ m�
nÐz��|Ð !

 

This is known as Erlang’s loss formula (Erlang’s Blocking formula) and is 
denoted by ���, :/d�.  The formula is still being usedin telecommunication 
systems. Properties of the above Erlang Loss system has been studied by many 

researchers in the last five decades. The relation ¡N ≡ ���, }��  can also be 

expressed as  

  [���, }��]!�= [m/(a/b)] [��� − 1, :/d]!� + 1. 
This recursive relation with the initial value m0, }�n = 1 is used for computation 

of values of ¡N, � = 1, 2, … 

Example 5(e): Machine Interference Problem 

Consider that there are m identical machines. Each of the machines operates 
independently and is serviced a single servicing unit in case of break down. 
The operating time and serving time of each machine are independently 
distributed as exponential distribution with  parameters d :�; : respectively. 
Then the number of machines in operating condition at time t constitutes a 
Markov process�	���, � ≥ 0� with state space �0, 1, . . , ��. 
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Example5(f):  

Two – channel service system. Consider Example 5(d) with � = 2. Suppose 
that the service channels are numbered I and II and suppose that we are 
interested in whether particular channels are busy (B) or free (F). Let the 
ordered pair(I, j) denote the state of the system, where 6 refers to that of the 
firstchannel and  j to that of the second. The four states of the 
system(�, ��, ��,��, ��, ��  and ��,�� may be denoted by 0, 1, 2, 3 
respectively. The process �	���� denoting that the states of the system in terms 
of the two channels may be described by a Markov process with state space 0, 
1, 2, 3. 

Assume that when both the channels are free a demand may join either of the 

channels for service with equal probability m��n. Thus, when both the channels 

are free, demands to each of the channels flow in accordance with a Poisson 
process with parameter :/2. We have 

   K�,J�∆�� = m}�n ∆� + <�∆��,                  I = 1, 2 

   K�,J�∆�� = d∆� + <�∆��,                      I = 0 

    = :∆� + <�∆��,                        I = 3             
   K �,J�∆�� = d∆� + <�∆��,                      I = 0 

    = :∆� + <�∆��,                        I = 3             
   K  ,J�∆�� = d∆� + <�∆��,                      I = 1, 2 

And for all other combinations of 6 ≠ I, K $,J�∆�� = <�∆��. 
Thus the matrix A will be 

   

YZ
Z[ −:          }� }�               0d    − �: + d�              0             :d           0            − �: + d�       : 0           d                     d          − 2d_̀

à
 

The normal equation (4.19) become 

   −:¡�             + d¡�    +d¡�                           = 0 

   m}�n ¡�           − �: + d�¡�                           + d¡ = 0 

   m}�n ¡�                                  − �: + d�¡�    + d¡  = 0  
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     :¡�                 + :¡�       − 2d¡ = 0. 
From the second and third equations we get ¡� = ¡� and then from the first we 

get ¡� = �2d/:�¡� and from the last ¡ = �:/d�¡�. Utilising ∑ ¡� = ${�1, we at once get 

   ¡� = ¡� = }�}1H�}�H��1 

   ¡� = ��1
}1H�}�H��1 

   ¡ = }1
}1H�}�H��1  . 
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BLOCK II 

UNIT : V WEINER PROCESSES AND 
BRANCHING PROCESSES 

    5.1 Markov Process with Continuous State Space 
   5.2 Brownian Motion Problems -  Introduction 
 

5.1 Markov Process with Continuous State Space 

Poisson processes is a real life process with continuous time with  discrete 
counting state space. But in most of the real life problems Markov Problems 
have continuous state space. For example , level of water in a dam over a 
continuous time space, Life time of a electronic device over a continuous time 
are Stochastic processes with continuous state space.  In mathematical term �	���: � � � }where � = �−∞, ∞� and 	��� � �−∞, ∞� is a stochastic process 
with continuous time space and continuous state space. 
 

5.2 Introduction:  BROWNIAN MOTION PROBLEMS  

Poisson process is a process in continuous time with a discrete state space. 
Here in a small interval of time ∆�, there is either no change of state or there is 
only one change, the probability of more than one change being of the order of ∆�. In this unit we shall consider Markov processes such that in an 
infinitesimal interval, there is a small change of state or displacement. In such 
a process, changes of state occur continually all the time and the state space is 
continuous. Because of the connection with the theory of diffusion, Markov 
processes with continuous state space are also known as diffusion processes. A 
particle under diffusion or undergoing Brownian motion is also known as a 
Brownian a fixed axis. 

 At epoch t, let 	��� be the displacement along a fixed axis of a particle 
undergoing Brownian motion and let 	�0� = 0�. Consider an interval �@, �� of 
time; let us regard this interval as the sum of a large number of small intervals. 
The total displacement�	��� − 	�@�� in this interval can be regarded as the 
limit of the sum of random displacement over the small intervals of time. 
Suppose that the random displacements are independently distributed. Then it 
can be seen that the central – limit theorem applies, whence it follows that the 
total displacement �	��� − 	�@�� is normally distributed. Further, suppose that 
the displacement �	��� − 	�@�� depends on the length of the interval �@, �� 
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and not on the time – point @ that �	��� − 	�@�� has the same distribution as �	�� + ℎ� − 	�@ + ℎ�� for all ℎ > 0. 
 It is to be noted that here both time and space variables are continuous. 
The equations of the process obtained by taking limits of both time and space 
variables will be partial differential equations in both time and space variables. 
These equations, called diffusion equations, will be discussed in Sec. 5.3, In 
Sec 5.2 we develop Wiener process as the continuous limit of the simple 
random walk. 

 It may be noted that there are some measure – theoretic subtleties 
involved in the passage from the discrete to the continuous case. Their 
considerations are, however, beyond the scope of this book. 

 We assume that the process �	���, � ≥ 0� is Markovian. Let the 
cumulative transition probability 

be    (�0�, @;  0, �� = Pr�	��� ≤ 0 | 	�@� = 0��, @ <1  (1.1) 

And let the transition probability density K be given by 

    (�0�, @;  0, ��;0 = Pr�0 ≤ 	��� < 0 +;0 	@=00�. (1.2) 

For a homogeneous process the transition probability depends only on the 
length of the interval �� − @� and then the transition probability may be 
denoted in term of the three parameters, 0�, 0, � − @. 
We denote   Pr�0 ≤ 	�� + ��� < 0 + ;0 | 	���� =0�� dÎ          K�0�, 0 ; ��;0 

For any ��, The Chapman – Kolmogorov equation can be written as follows: 

   

 (�0�, @;  0, �� = Ì ;� (�0�, @;  �, ¡�(��, ¡ ; 0, ��. 
In terms of transition probabilities (�0�, @;  0, ��, we have 

   

 (�0�, @;  0, �� = Ì (�0�, @;  �, ¡�(��, ¡ ; 0, ��;�. 
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UNIT - VI  WIENER PROCESS 

6.1. WIENER PROCESS 
6.2. DIFFERNTIAL EQUATIONS FOR A WIENER PROCESS 
6.3. KOLMOGOROV EQUATIONS  

6.1. WIENER PROCESS 

 Consider that a (Brownian) particle performs a random walk such that 
in a small interval of time of duration ∆�, the displacement of the particle to 
the right or to the left is also of small magnitude ∆0, the total displacement 
	(�) of the particle in time � being x. Suppose that the random variable #$ 
denotes the length of the 6�� step taken by the particle in a small interval of 
time ∆� and that 

    Pr�#$ = ∆0� = K :�; Pr�#$ = −∆0� = \, K +
\ = 1 

0 < K < 1, where K is independent of 0 :�; �. 
Suppose that the interval of length � is divided into � equal subintervals of 
length ∆� and that the displacements #$ , 6 = 1, … , � in the � steps are mutually 
independent random variables. Then � . (∆�) = � and the total displacement 
	(�) is the sum of � 6. 6. ;. random variables #$ , 6. 9. 

	(�) = ý#$ ,
(�)
${�  � ≡ �(�) �∆�. 

We have  Ã�#$� = (K − \)∆ 0 :�; ¡:? (#$) = 4K\ (∆0)�. 
Hence   Ã�	(�)� = �Ã(#$) = �(K − \) ∆Å∆ 0,   

  (2.1) 

And   ¡:?�	(�)� = � ¡:?(#$) = h~�)(∆Å)1∆� . 
To get meaningful result, as ∆0 → 0, ∆� → 0, we must have 

   
(∆Å)1∆� → a limit,  (K − \) → a multiple of ∆0.  

  (2.2) 

We may suppose, in particular, that in an interval of length �, 	(�) has mean – 
value function equal to �� and variance function equal to ���. In other words, 
we suppose that as ∆0 → 0, ∆� → 0, such a way that (2.2) are satisfied, and per 
unit time 
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   Ã�	(�)� → � :�; ¡:?�	(�)� → ��   
  (2.3) 

From (2.1) for � = 1 and (2.3) we have 

   
(~!�)∆Å∆� → �;  h~�(∆Å)1∆�  → ��.    

  (2.4) 

The relations (2.2) and (2.4) will be satisfied when 

   ∆0 = �(∆�)� �
 ,     
   (2.5a) 

   K = �
� �1 + �(∆�)� �
 �
 � ,   \ = �

� �1 − �(∆�)� �
 �
 �.
   (2.5b) 

Now since #$ are i. i. d. random variables, the sum ∑ #$
(�)${� = 	(�) for large 

�(�)(= �), is asymptotically normal with mean �� and variance ��� (by virtue 
of the central limit theorem for equal components). Note that here also � 
represents the length of the interval of time during which the displacement, 
that takes place is equal to the increment	(�) − 	(0).We thus find that for 0 < @ < �, �	(�) − 	(@)� is normally distributed with mean �(� − @) and 
variance ��(� − @). Further, the increments  �	(@) − 	(0)� and  �	(�) −
	(@)� are mutually independent; this implies that  �	(�)� is a Markov process. 

We may now define a Wiener or a Brownian motion process as follows: 

The stochastic process  �	(�), � ≥ 0� is called a Wiener process (or a Wiener – 
Einstein process or a Brownian motion process) with drift � and variance 
parameter ��, if: 
(i)	(�) has independent increments, i. e. for every pair of disjoint intervals of 
time (@, �) and (>, ¡),        where @ ≤ � ≤ > ≤ ¡, the random variables 
�	(�) − 	(@)� and �	(¡) − 	(>)� are independent. 

        (ii) Every increment �	(�) − 	(@)� is normally distributed with mean 
�(� − @) and variance��(�). 
Note that (i) implies that Wiener process is a Markov process with 
independent increments and(ii) implies that a Wiener process is Gaussian. 
Since �	(�) − 	(0)� is normally distributed with mean�� and variance���, the 
transition probability density function p of a Wiener process is given by 

K(0�, 0 ; �);0 = (?�0 ≤ 	(�)0 + ;0 | 	(0) = 0�� 



 

77 

 

   = �
�Ü(���)  90K �− (Å!Å|!��)1��1� � ;0.   

  (2.6) 

A Wiener process �	(�), � ≥ 0� with 	(0) = 0, � = 0,� = 1 is called a 
standard Wiener process. 

6.2. DIFFERNTIAL EQUATIONS FOR A WIENER 
PROCESS 

 Let  �	(�), � ≥ 0� be a Wiener process. We can consider the 
displacement in such a process as being caused by the motion of a particle 
undergoing displacements of small magnitude in a small interval of time. 
Suppose that (� − ∆�, �) is an infinitesimal interval of length ∆� and that the 
particle makes in this interval a shift equal to ∆0 with probability K or a shift 
equal to −∆0 with probability K = 1 − K. Suppose that K :�; \ are 
independent of 0 :�; �. Let the transition probability that the particle has a 
displacement from 0 �< 0 + ∆0 at epoch t, given that it started from 0�at 
time0, be K(0�, 0 ; �) ∆0. Further suppose that K(0�, 0 ; �) admits of an 
expansion in Taylor’s series, i. e. 

   K(0�, 0 ± ∆0 ; � − ∆�) = K(0�, 0 ; �) − ∆� ¼~
¼� ± ∆0 ¼~

¼Å 

      + �
� (±∆0)� ¼1~¼Å1 + <(∆�). 

   (3.1) 

From simple probability arguments we have 

   K(0�, 0 ; �) ∆0 = K .  K(0�, 0 − ∆0 ; � − ∆�) ∆0 

     +\ . K(0�, 0 + ∆0 ; � − ∆�) ∆0. 
    (3.2) 

Making use of (3.1), and cancelling out the factor ∆0 from both sides of (3.2) 
we get 

   K(0�, 0 ; �) = KK(0�, 0 ; �) −  ∆� ¼~
¼� − ∆0(K − \)  ¼~

¼Å 

     + �
� (∆0)� ¼1~¼Å1 + <(∆�). 

Divide both sides by ∆�. Using (2.4) and (2.5) and taking limits as ∆� →0, ∆0 → 0, we get 
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¼¼� K(0�, 0 ; �) = −� ¼¼Å K(0�, 0 ; �) + �� �� ¼1¼Å1 K(0�,

  0 ;�.   (3.3) 

This is a partial differential equation in the variables 0 :�; �, being of first 
order in � and of the second order in x. The equation is known as the forward 
diffusion equation of the Wiener process. One can likewise obtain the 
backward diffusion equation of the process in the form 

   
¼
¼� K(0�, 0 ; �) = −� ¼¼Å| K(0�, 0 ; �) + �� �� ¼1¼Å|1 K(0�,

  0 ;�.   (3.4) 

The solution of (3.3) (as well as of (3.4)) yields K(0�, 0 ; �) as a normal 
density of the form given in (2.6) (see also Sec. 5.5). It may, however, be 
easily verified that K(0�, 0 ; �) given by (2.6) satisfies (3.3) as well as (3.4). 
The equation for a Wiener process with drift � = 0 is known as the heat 
equation. 

Note: The partial differential (3.3) [(3.4)] is known as the forward [backward] 
equation because it involves differentiation in 0�0�º. The reason why it is 
called diffusion equation is given the next section. 

It is to be noted that in Sec. 5.2 and 5.3 we have made the following 
assumptions: 

    (i) in a small interval of time ∆�, the displacement ∆0 is small (and that 

∆0 = < m(∆�)� �
 n);  

 (ii) Ã�	(�)� → �� in the limit; 

 (iii) ¡:? �	(�� → ��� in the limit. 

The quantity � 6� (66) may also interpreted as 

   lim∆�→� ���(�H∆�)!�(�)�∆� = μ    

 (3.5) 

The implies that the infinitesimal mean (i.e. mean over∆�) of the variance of 
the increment in 	(�) exists and is equal to finite quantity��. 
For a Wiener process, � :�; �� are assumed to be constants, independent of � 
or of 0(Xℎ9?9 	(�) = 0). By considering the transition mechanism with � :�; ��as functions of t or of x or both t and x, we get more general 
processes for which the equations corresponding to (3.3) and (3.4) will also be 
more general. We discuss below such equations. 
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6.3. KOLMOGOROV EQUATIONS 

        Let  �	(�), � ≥ 0� be a Markov process in continuous time continuous 
state space. We make the following assumptions: For any� > 0, 
          (i)   (?�| 	��� − 	�@�| > � | 	��� = 0� = <�� − @�, @ < �. 
 In other words, small changes occur during small intervals time. 

          (ii)   lim∆�→� �����H∆��!���� | y���{Å�∆�  

    = lim∆�→�Ì|Ï!Å|���Î − 0�K� 0, �; Î, � + ∆��;Î 

    = :��, 0�. 
In other words, the limit of the infinitesimal mean of the conditional 
expectation of the increment of 	��� exists and is equal to :��, 0�, which is 
known as the coefficient. 

       (iii)     lim∆�→� �*[���H∆��!����]1 | y���{Å4∆�  

   = lim∆�→�Ì|Ï!Å|���Î − 0�� K� 0, �; Î, � + ∆��;Î 

   = d��, 0�. 
In other words, the limit of the infinitesimal mean of the variance of the 
increment of 	��� exists and is equal to d��, 0�, which is known as the ;677>@6<� =<9776=69��. A Markov process �	���� satisfying the above 
conditions is known as a ;677>@6<� 9\>:�6<�. We give below the equations . 

 Let �	���, � ≥ 0�be a Markov process satisfying �6�, �66�:�;�666. � If its 
transition p.d. f. 

K�0�,  ��;  0, �� possesses continuous partial derivatives 

    
¼~¼� , ¼~¼Å �:��, 0�K�, ¼1

¼Å1 �d��, @�K�,  
Then K�0�,  ��;  0, �� satisfies the forward Kolmogorov equation 

    
¼~¼� = − ¼~¼Å �:��, 0�K� + �� ¼1

¼Å1 �d��, 0�K�.  
   (4.1) 

This equation is also known as the�<ee9? − (A:�=e 9\>:�6<�. Suppose that K�0�,  ��;  0, �� possesses continuous partial derivatives 
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¼~¼�| , ¼~

¼Å| , ¼1~
¼Å|1 ;  

Then K(0�,  ��;  0, �) also  satisfies the backward Kolmogorov equation 

    
¼~¼�| = −:(��, 0�) ¼~¼Å| − ��  d(��, 0�) ¼1~¼Å|1. 

    (4.2) 

  The diffusion equations for 	(�) were first derived by Kolmogorov. Feller 
showed that under suitable restrictions the equations admit of a unique 
solution. Fortet established some very interesting and important properties of 
the solutions. 

 Particular case:If the process is homogeneous, then 

   K(0�,  �� ; �, 0) = K(0�, 0 ;  � −  ��),  

and:(�, 0), d(�, 0) are independent of t. 

If the process is additive, i. e. given that	( �� ) =  0� , the increment  
�	(�), 	( �� )�, depends only on ��  :�; � (and not on  0� ), then 

    K(0�,  �� ; �, 0) = K(0 − 0� ;  ��, �) :�; :(�, 0),
d(�, 0)   

Are independent of 0. 
The Kolmogorov equations, in these case, can be easily deduced from the 
general equations. 
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Unit – VII FIRST PASSAGE TIME 
DISTRIBUTION FOR WIENER 

PROCESS  

 7.1. First Passage Time Distribution For Wiener Process 
 7.1.1 Distribution of the Maximum of a Wiener Process 
 7.1.2 Distribution of the First Passage Time to a Fixed Point 

7.2 Ornstein – Uhlenbeck Process 
         7.2.1 Remarks: 

7.1. FIRST PASSAGE TIME DISTRIBUTION FOR WIENER 
PROCESS 

 The possible realizations of a stochastic process are called sample 
paths or trajectories. The structure and the properties of the same paths of a 
Brownian motion or Wiener process are the subject matter of deep study. 
Without entering into the subtleties(which are beyond the scope of this work), 
we discuss here some results of Wiener process, using the property that the 
sample paths are continuous functions. We also make use of the simple but 
powerful ‘ reflection principle’. The principle relates to the fact that there is a 
one –to-one correspondence between all paths from ¸(:�, :�)�< �(d�, d�) 
which touch or cross the x-axis and all paths from ¸£(:�, −:�) �< �(see, 
Feller, Vol I for details). We shall first consider the following from which the 
distribution of the first passage time will be derived. 

7.1.1 Distribution of the Maximum of a Wiener Process 

Lemma:  Let �	(�), 0 ≤ � ≤ �� be a Wiener process with 	(0) = 0 :�; � =
0. �9� V(�) be the maximum of 
	(�)6� 0 ≤ � ≤ �, 6. 9. V(�) = �:0����Ö 	(�). Then for any : > 0 

    Pr�V(�) ≥ :� = 2 Pr�	(�� ≥ :�. 
(This result was first obtained by Bachelier(1900).) 

Proof:Consider the collection of sample path	(�), 0 ≤ � ≤ � such 
that 	(�� ≥ :. Since 	(0) = 0 :�; 	(�) is continuous, there exists a time � 
at which 	(�) first attains the value : (or 	(�)this first the value :). The time �} is itself a random variable. For > �} , 	}(�) gives below 

    	}(t) =  5	(�),                 � < �}2: − 	(�),       � > �}Þ 
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gives reflection of 	(�) about the line0 = :. Note that 
	}(T) ≤ :, :�; �ℎ:� V(�) = �:0����Ö 	(�) > : and  V}(T) =�:0����Ö 	}(�) ≥ :; further, by symmetry the sample paths 	(�) :�; 	}(t) 
have the same probability of occurrence. From reflection principle, it follows 
that corresponding to every sample path 	(�) for which 	(�) ≥ :, there exist 
two sample paths such that V(�) ≥ :, Further, its converse is also true, viz., 
every sample paths 0(�) for which V(�) ≥ : corresponds to two sample paths 
	(�) with equal probability, one of the paths being such that 	(�) > :, unless �	(�) = :�, whose probability is zero. In fact, the set �V(�) = :� is the union 
of three disjoint sets 

    �V(�) ≥ :, 	(�) > :�, 
    �V(�) ≥ :, 	(�) < :�, 
and   �V(�) ≥ :, 	(�) = :�, 
The probability of the third set is zero, while the two are mapped onto one 
another by reflection about the line 0 = : after the time �}. Thus we have 

    Pr�V(�) ≥ :, � = 2 Pr�V(�) ≥ :�. 
The above gives a heuristic proof of the lemma; as already indicated, a 
rigorous proof involves considerations beyond the scope of this book (see 
Karlin and Taylor, Iosifescu and Tautu). 

Let  �	(�), � ≥ 0� be a Wiener process with 	(0) = 0, � = 0 :�; V(�) =�:0��%�� 	(@). Then from the lemma, we get, for � > 0, � = 1. 
  Pr�V(�) ≥ :, � = 2 Pr�V(�) ≥ :� 
    = �

Ü(���)Ì 90K(−0�/2�);0P}   

 (5.1a) 

    = �Ü(��)Ì  90K(−Î�/2);ÎP}/√�  

    ádÎ =ℎ:�Ç6�Ç �ℎ9 ¡:?6:dA9 �< Î = 0
√�
 â  

    = 2 51 − �
Ü(��)Ì  90K(−Î�/2);Î}/√�!P Þ  

    = 2*1 − Φ(:/√�)4.  

Φ being the distribution function of the standard normal variate. 
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By changing the variable to @ = }1�Å1 , (5.1:) can be written as 

   

 Pr�V(�) ≥ :� = }
Ü(��)Ì @! �⁄  90K m− }1

�%n ;@, @ > 0.��  

 (5.1d) 

7.1.2Distribution of the First Passage Time to a Fixed Point 

We can use the lemma to obtain the distribution of the random variable �}, the 
first passage time to a fixed point :(> 0) (or the time of hitting a fixed point : 
first), for a Wiener process�	(�)� X6�ℎ 	(0) = 0, � = 0. The time 
�} 7<? 	(�) to hit the level : first will be less than � 677 V(�) =�:0��%�� 	(@) in that time is at least :. 
Thus for � > 0    (?�V(�) ≥ :� = (?(�} ≤ �). 
   (5.2) 

Hence the distribution function �(�) = Pr ��} ≤ �� is 

    �(�) = �Ü(���)Ì 90K(−0�/2�);0P}   

  (5.3a) 

    = 2*1 − Φ(:/√�)4    

 (5.3b) 

    = }Ü(��)Ì @! �⁄  90K m− }1
�%n ;@, @ > 0.��  

  (5.3c) 

The density function of �} is obtained by differentiating (5.3) with respect to t. 
Differentiation of (5.3c) (and also 5. 3b) readily gives 

    7Ö�
(�) = �£(�) = }Ü(��) �! �⁄ 90K m− }1��n , � > 0

  (5.4) 

It may be easily verified that the Laplace transform is 

    7(@) = Ì 9!%�P� 7(�);� 
     = exp �−:Ü(2@)�. 
It can be seen that on moment of �} exists finitely. 

Let us find the density function of V(�). The distribution function is 
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    ï(:) = Pr �V(�) ≤ :� 
     = 1 − Pr �V(�) > :� 
     = 1 − 2Pr �	(�) ≥ :� 
     = 1 − �

Ü(���)Ì 90K (−0�/2�) ;0P
}  

  (5.5a) 

     = 1 − 2*1 − Φ(:/√�)4  

    (5.5b) 

     = 2Φ(:/√�) − 1. 
Differentiating (5.5a)(or 5.5b) with respect to :, we get the density function 

    Ç](:) = ï£(:) = �Ü(���)  90K m− }1
��n , : > 0.

   (5.6) 

The result given above (for � = 1) can be suitably modified for any � > 0. 
Note 1:We have obtained the distribution of �} by using the lemma which 
gives a relation between the distributions of the Wiener process 	(�) and its 
maximum V(�). However, the distribution of �} can be obtained directly 
without bringing in the distribution of the maximum. IN fact, it can be directly 
shown that, if 	(0) = 0, : > 0, then 

    Pr��} ≤ �� = 2 Pr�	(�� ≥ :�.  
   (5.7) 

For a proof of the above, see Prohorov and Rozanov, who use conditional 
expectations to obtained by using (5.2). 

Note 2: For an alternative approach to the distribution of �}using 
differential equations,see Cox and Miller, who obtain the distribution for any 
� ≥ 0 :�; � > 0. The density function 7Ö�

(�) (7<? 	(0) = 0, � ≥ 0, � > 0) 
of �} is found to be 

    7Ö�
(�) = }}Ü(��Å ) exp �− (}!�Å)1��1Å � , 0 > 0; 

  (5.8) 

And its Laplace transform is 

    7(@) = 90K r(: ��⁄ )�+� − Ü(�� + 2@��)�s. 



 

85 

 

The mean and the variance for �} for � ≠ 0 are given by 

    Ã��}� = : �⁄  :�; ¡:?��}� = :�� � .⁄  

 

Note 3: 

The function(5.8) with � > 0 is the density function of the distribution of the 
passage time of Brownian motion with a positive drift. This distribution 
having density function (5.8) is known as  inverse Gaussiandistribution 
because of the inverse relationship between the cumulant generating function 
of this distribution and that of normal distribution. Such a distribution was also 
obtained by Wald as the limiting form for the distribution of the sample size in 
a sequential probability ratio test. For properties of this distribution, see 
Johnson and Kotz (1970), and for statistical applications, see Folks and 
Chhikara (1978). 

Example 5(a). 

Suppose that �	(�), 0 < �, � is a Wiener process with 	(0) = 0, :�; � = 0. 
Then 

    (?�	(�) ≤ 0� = (?*	(�) �√�⁄  ≤ 0 �√�⁄ 4 =
ΦL0 �√�⁄ M. 
Consider the process  S(�) = �	(1 �⁄ ) 6� 0 < � ≤ 1 X6�ℎ S(0) = 0. 
We have   Ã�S(�) = 0 :�; ¡:?�S(�)� = ��(�� �⁄ ) =
��/�. 
Further,   (?�S(�) ≤ Î� = (?��	(1 �⁄ ) ≤ Î� =
(? 5 y(� �⁄ )

ℵÜ(� �⁄ ) ≤ Ï(�)
ℵÜ(� �⁄ )Þ 

Thus �S(�), 0 < � ≤ 1� X6�ℎ S(0) = 0 is also a Wiener process with � = 0 
and variance �� �. 
Example 5(b).  

Consider a Wiener process �	(�)� with 	(0) = 0. Its mean value function is �� and variance function �� �. For 0 < @ < �, the covariance function is 

    »(@, �) = =<¡�	(@), 	(�)� = =<¡�	(@), 	(@) +
	(�) − 	(@)� 
     = =<¡�	(@), 	(@)� + =<¡�	(@), 	(�) −
	(@)� 
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     = =<¡�	(@), 	(@)�, 
Since the process has independent increments. Thus 

    »(@, �) = ¡:?� 	(@)� = ��@ 

The process is not covariance stationary even when � = 0. 
Example 5(c). 

 Suppose that �	(�), � > 0� is a Wiener process with 	(0) = 0. Its first 
passage time, �} �< : has same distribution as 1 ��⁄ , where > is a normal 
variate with mean 0 and s. d. � :.⁄  For, the distribution function of 1 ��⁄  for 
� > 0, is 

   
 �(�) = (?�1 ��⁄ ≤ �� = (?��� (� :⁄ )� ≥⁄ :� ���⁄ � 
    = (?*(:> �⁄ ) ≥ L: �√�⁄ M4 + (?*(:> �⁄ ) ≤−:�� 
    = 1 − ΦL: �√�⁄ M + ΦL−: �√�⁄ M 
    2 m1 − ΦL: �√�⁄ Mn. 

Which is the distribution function of �} (see equation (5.3b)). The distribution 
of 1 ��⁄  is inverse Gaussian. 

Example 5(d).  

Let �	(�), � ≥ 0� be a Wiener process with � = 0 :�; 	(0) = 0. To find the 
distribution of �}H� for 0 < : < : + d. 
       Suppose that �} is a value of �}, 6. 9. 	(�) reaches the level : for the first 
time a epoch �}, We may then consider that the process starts at (�}, :) and 
reaches the level (: + d), which is d units higher than :. Suppose that �}H� − �} is the duration of the interval at the ends of which 	(�) first reaches 
the level : and then reaches first the level : + d. Then �} :�; (�}H� − �}) are 
independent random variables denoting first passage times to : :�; d 
respectively. The L.T. of the p. d. f. of �} is 

    ℎ}(@) = 90K �−Ü(2@) �⁄ � 
and that of �} is   ℎ�(@) = 90K �−dÜ(2@) �⁄ �. 
Thus the L. T. of the p. d. f. of �}H� is 
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    ℎ}(@)ℎ�(@) = 90K �−(: + d)Ü(2@) �⁄ � =
ℎ}H�(@). 
7.2 ORNSTEIN – UHLENBECK PROCESS 

We have seen that for a Wiener process �	(�)�, the displacement ∆0, in a 

small interval of time ∆� is also small, being of "�L√∆�M#. The velocity which 

is of �L√∆� ∆�⁄ M = �L1 √∆�⁄ M tends to infinity as ∆� → 0. Thus the Wiener 

process does not provide a satisfactory model for Brownian motion for small 
values of t, although for moderate and large value of t it does so. An 
alternative model which holds for small t proposed by Ornstein and Uhlenbeck 
in 1930. Here instead of the displacement  

The equation of motion of a Brownian particle can written as 

    ;$(�) = −-$(�);� + ;�(�),  
  (6.1) 

Where −-$(�) represents the systematic part due to the resistance of the 
medium and ;�(�) represents the random component. It is assumed that these 
two parts are independent and that �(�) is a Wiener process with drift � = 0 
and variance parameter ��. The Markov process �$(�), � ≥ 0� is such that in a 
small interval of time the change in $(�) is also small. Since �(�) is a Wiener 
process, we have from (6.1) 

    A6�∆�→� %�&(�H∆�)!&(�)| &(�){'�
∆�  

     = −βu + A6�∆�→� %�∆�(�)�
∆�  

     = −βu, 
and     A6�∆�→� §})�&(�H∆�)!&(�)| &(�){'�

∆�  

    = A6�∆�→� (∆�)1∆� + §})�∆÷(�)�
∆� , 

    = ��. 

In other words, the limits exist. So the process �$(�), � ≥ 0� is a diffusion 
process and its transition p. d. f. K(>�; >, �) satisfies the forward Kolmogorov 
equation (4.1) with :(>, �) = −βu and b(u, t) = ��. 
This is, K satisfies the differential equation 
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¼~¼� = - ¼¼' (>K) + �� �� ¼1~¼'1.   

 (6.2) 

Let us assume that $(0) = > and that as >� → ±∞, K → 0 and m¼~
¼'n → 0. The 

solution of (6.2) gives K, the transition p. d. f. of $(�). It is more convenient to 
consider the equation corresponding to (6.2) in the characteristic function of K, 6. 9. 
    Φ(>�;  ,, �) = Ì 9$-' K(>�; >, );>.P!P  

We have   Ì 9$-' ¼¼' (>K);> =P!P 9$-' >K |!PP −
Ì  6, 9$-' > K ;> P

!P  

      = −, ¼
¼- Ì 9$-' K ;> P

!P  

      = −, ¼.
¼-

; 

    Ì 9$-'P
!P

¼1~
¼'1 = 9$-' ¼~

¼' |!PP −  6, Ì 9$-' ¼~
¼' ;>P

!P  

    = − 6, *9$-' K |!PP −  6, Ì 9$-' K ;> P
!P 4 

     = −,�/. 
The equation (6.2) then becomes 

    
¼.
¼� + -, ¼.

¼-
= − �

� ��,�/.   

 (6.3) 

The equation (6.3) is of Lagrange type. It can be shown that 

    /(>�;,, �) = 90K �6,>�9!0� − �h0 ,���L1 −9−2-�.  (6.4) 

This is the characteristic function of normal distribution with �(�) = >�9!0� 
and variance function ��(�) = �� L1 − 9!�0�M 4-⁄ . 

In other words, the transition p. d. f. K is normal with mean value function �(�) and variance function ��(�) and K can be written as: 

   K(>�; >, �) = �Ü(���1(�))  90K�− (0 − �(�))� 2��(�)⁄ �. 
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Thus the process �$(�), � ≥ 0� is a Gaussian process with mean value function 
�(�) and variance function ��(�). �$(�), � ≥ 0� is a Markov process but it 
does not possess independent increments like the Wiener process. �$(�), � ≥0 is known as Ornstein – Uhlenbeck process (O - U. P.). For large t, ��→0 

and ��(�) → �1�0 , 6. 9. the distribution of velocity is normal with mean 0 and 

variance 
�1
�0. We thus get an equilibrium distribution and $(�) is said to in 

statistical equilibrium. For small t, �(�) → >�:�; ��(�) → ���. 
Example 6(a). 

Joint distribution of $(�) :�; $(� + �) when $(�) is in equilibrium. For large 
t, the limiting distribution of $(�) is normal with mean o and variance 
�1�0 = ���. The conditional distribution of $(� + �), given $(�) = >, is normal 

with mean >9!01 and variance ��� = �� L1 − 9!�0�M 2-⁄ . Thus the 

unconditional distribution of $(� + �) has the following density 

   ℎ(0) = �
2L���|1MÌ ©90K m− Å|1��|1n �Ü(���1(�))  ×P

!P
90K−12�2(�)0−009−-�2 ;00 

 

   = �
2L���|1M  90K m− Å1

��|1n. 

Thus the unconditional distribution of $(� + �) is Gaussian, has mean 0 and 
variance ���and the unconditional distribution of $(� + �) is the same as the 
equilibrium distribution of $(�). The joint distribution of $(�) :�; $(� +�)has the density 

  

 �(0, Î) = �
2L���|1M  90K m− Å1

��|1n . �
Ü(���1(�))  90K �− �

��1(�) LÎ −
09−-�2 

    
����|1Ü(�!�1)  90K �− �

��|1(�!�1) (Î� − 2:0Î +02, 
Where = = 9!0� . 
It follows that $(�) :�; $(� + �) have a bivariate Gaussian distribution with 
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   Ã�$(�)� = Ã�$(� + �)� = 0, 
   =<¡�$(�), $(� + �)� = ���9!0 | 1 | 
and    ¡:?�$(�)� = ���. 
The mean and the variance of $(�) are finite and the covariance function =<¡�$(�), $(� + �)� is a function of the absolute difference only. Hence 
�$(�)� is covariance stationary. Again, since �$(�)� is Gaussian, �$(�)� is 
strictly stationary. 

Note that Wiener process is not covariance stationary. 

Example 6(b). The O – U. P. as a transformation of a Wiener process: 

Let �	(�), � ≥ 0�, be a standard Wiener process. Let 

   S(�) = �
√3 (�)  	L:Ç(�)M, : > 0. 

And let the (non - random) function Ç(�) be positive, strictly increasing with Ç(0) = 1. 
We have  Ã�S(�)� = 0 

   ¡:?�S(�)� = �
3(�)  ¡:?�	(:Ç(�))� 

    = �
3(�) �:Ç(�)� = :. 

Since (	(��), … , 	(�
)) is multivariate normal, so also is (	L: Ç(��)M , … , 	L: Ç(�
)M, :�; 7<? � > 0, 
   =<¡�S(�), S(� + �)� = =<¡ �yL} 3(�)M,   y(} 3(�H1))(3(�)3(�H1))/ 1⁄ � 
Since, for the Wiener process �	(�)�, =<¡ �	(� + �)� = ¡:?	(�) (see 
Example 5(b)). 

Now   ¡:?�	(:Ç(�))� = ¡:?*ÜÇ (�)S(�)4 
     = Ç(�)¡:? �S(�)� = :Ç(�) 
and thus  =<¡�S(�), S(� + �)� = :�Ç(�)/Ç(� + �)�� �⁄  

and for � = 0, �ℎ9 =<¡:?6:�=9 9\>:A@ :/�Ç(�)�� �⁄ . 
The process �S(�)�, which has finite mean and variance, will be covariance 
provided =<¡�S(�), S(� + �)� depends only on �. Thus we must have 
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Ç(� + �) = Ç(�). Ç(�), and in order to satisfy this equation, Ç(�) must be an 

exponential function, say, Ç(�) = 9�0�(- > 0). We have then 

   =<¡�S(�), S(� + �)� = :9!0�(� > 0), 
and thus we find that for : > 0, - > 0 

   S(�) = 9!�0�	(:9�0�) 
Is a stationary Gaussian Markov process. In other words, S(�) has the 
structure of an Ornstein – Uhlenbeck process. 

7.2.1 Remarks: 

The concepts of O – U, process have been applied extensively in Finance, 
Economics and Management. O – U. process has been used as models for 
continuous control system, for buffer stock control, for continuous industrial 
processes in chemical plants, for process control in thermal plants and so on in 
industrial management; for pricing in a large system of cash bonds and so on 
in financial measurement; as well as for interest rate behavior and so on in 
economics. For application of diffusion processes in Finance and Economics, 
refer to Mallaris and Brock (1982). 

Problems: 

5.1 If 	(�), with 	(0) :�; � = 0, is a Wiener process, show that S(�) =
�	(�/��) is also a Wiener process. Find its covariance function. 

5.2 If 	(�), with 	(0) :�; � = 0, is a Wiener process and 0 < @ < �, show 
that for at least one � satisfying @ ≤ � ≤ �, 
  Pr�	(�) = 0� = m�

�
n =<@!�L(@/�)� �⁄ M. 

5.3 Let 	(�), with 	(0) = 0, be a standard Wiener process and let �} be the 
first passage time of 	(�). Show that �} :�; :��� are identically distributed. 

If #$, 6 = 1, 2, … , � are i. i. d. as �� then show that 
∑4Ð


  :�; #$ are identically 

distributed. 
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UNIT – VIII BRANCHING PROCESS 

       8.1 BRANCHING PROCESS – Introduction 
              8.1.1 Definition. 
              8.1.2 Note 1 
              8.1.3 Note 2 
              8.1.4 Note 3 
      8.2 Generating Functions of Branching Process 
              8. 2.2 Remarks. 

 

8.1 BRANCHING PROCESS  INTRODUCTION 

The history of the study of branching processes dates back to 1874, when a 
mathematical model was formulated by Galton and Watson for the problem of 
‘ extinction of families’. The model not attract much attention for a long time; 
the situation gradually changed and during the last 60 years much attention has 
been devoted to it. This is because of the development of interest in the 
applications of probability theory, in general, and also because of the 
possibility of using the models in a variety of biological, physical and other 
problems where one is concerned with objects that can generate objects of 
similar kind; such objects may be biological entities, such as human beings, 
animals, genes, bacteria and so on, which yield new neutrons under a nuclear 
chain reaction or in the process of nuclear fission. 

 We consider first the discrete time case. Suppose that we start with an 
initial set of objects(or individuals) which form the 0�� generation – these 
objects are called ancestors. The off-springs reproduced or the objects 
generated by the objects of the 0�� generation are the ‘ direct descendants’ of 
the ancestors, and are said to form the 1%� generation; the objects generated by 
these of the 1%� generation (or the direct descendants of the 1%�generation) 
from the 2nd generation, and so on, the direct descendants of the ?�� generation 
form the (? + 1)@� generation. The number of objects of the ?�� generation (? = 0, 1, 2, . . ) is a random variable. We assume that the objects reproduce 
independently of other objects, i. e., there is no interference. 

8.1.1 Definition. 

 Let the random variables	�, 	�, 	�, .. denote the sizes of (or the 
numbers of objects in) the 0�� , 1%� , 2
Õ , . ., generations respectively. Let the 
probability that an object (irrespective of the generation to which it belongs) 
generates e similar objects be denoted by KT , Xℎ9?9 KT ≥ 0, e =
0, 1, 2, . . ,∑ KTT = 1. 



 

93 

 

The sequence �	
, � = 0, 1, 2, . . , � constitutes 
: ï:A�<� − Æ:�@<� d?:�=ℎ6�Ç K?<=9@@ (or simply : G. W. branching 
process) with off – spring distribution �KT�. 
             The process is also called Bienayame – Galton – Watson process, in 
recognisation of an even earlier work by Bienayame. 

 Our interest lies mainly in the probability distribution of 	
 and the 
probability that 	
 → 0 for some �, 6. 9., the probability of ultimate extinction 
of the family. 

8.1.2 Note 1: 

Unless otherwise stated, we shall assume that 	� = 1, 6. 9., the process starts 
with a single ancestor. 

8.1.3 Note 2: 

 The sequence (	
) forms a Markov chain with transition probabilities 

   K$J = (?�	
H� = I | 	
 = 6�, 6, I = 0, 1, 2, .. 
It is however not always easy to specify K$J . 
8.1.4 Note 3: 

 The generating functions are very useful in the study of branching 
processes. 

8.2 PROPERTIES OF GENERATING FUNCTIONS OF 
BRANCHING PROCESSES 

Another definition given is as follows: 

A Galton – Watson process is a Markov chain �	
, � = 0, 1, 2, . . � having state 
space N(set of non – negative integers), such that 

   	
H� = ∑ Ϛ) ,y3){�     
 (2.1) 

Where Ϛ) are i. i. d. random variables with distribution �KT�. 
Let   ((@) = ∑ (?�Ϛ) = e�@T = ∑ KT@TTT   
 (2.2) 

be the p. g. f. of �Ϛ)� and let 
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   (
(@) = ∑ (?�	
 = e�@T, � = 0, 1, 2, . .T                                 
(2.3) 

be the p. g. f. of �	
�. 
We assume that 	� = 1; clearly (�(@) = @ and (�(@) = ((@). The r. v.’ a 	� 
and Ϛ) both give off – spring distribution. 

Theorem 8.2.1 

We have  (
(@) = (
!�(((@))     
  (2.4) 

and   (
(@) = (((
!�(@)).     
  (2.5) 

Proof: 

We have, for � = 1, 2, … 

   (?�	
 = e� = ∑ (?�	
 = e | 	
!� = I�. (?�	
!� =PJ{�I 
    = ∑ (?*∑ Ϛ) = eJ){� 4. (?�	
!� = I�PJ{�  

So that,   (
(@) = ∑  (?�	
 = e�PT{� @T 

  = ∑ @TPT{� "∑ (?*∑ Ϛ) = e$){� 4(?�	
!� =PJ{�I 
  = ∑ (?�	
!� = I�PJ{� "∑ (?*Ϛ� + Ϛ� +⋯+$){�ϚI=e@e. 

The expression within square brackets, being the p. g. f. of the sum Ϛ� +⋯+ϚJ of j i. i. d. random variables each with p. g. f ((@), equals �((@)ºJ. Thus 

 (
(@) = ∑ (?�	
!� = I�PJ{� �((@)ºJ 
   = (
!�(((@)). 
Thus we get (2.4). Putting � = 2, 3, 4, …, we get, when 	� = 1, 
  (�(@) = (�L((@)M = (L((@)M, ( (@) =(�(((@)), (h(@) = ( (((@)) 
and so on, Iterating (2.4) we get 
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  (
(@) = (
!�L((@)M = (
!�(((((@))) 
   (2.6) 

   = (
!�L(�(@)M. 
For � = 3,  ( (@) = (�L( (@)M = (L( (@)M. 
Again iterating (2.6), we get  

 (
(@) = (
! (((( (@))) = (
! L( (@)M, 
and for � = 4, (h(@) = (�L( (@)M = (L( (@)M. 
Thus (
(@) = (
!TL(T(@)M, e = 0, 1, 2, . . , �, 
and for e = � − 1 (
(@) = (�L(
!�(@)M = (L(
!�(@)M. 
Thus we get (2.5). 

Note:that even when	� = 6 ≠ 1, the relation (2.5) holds but (2.4) does not 
hold. 

8. 2.2 Remarks. 

                     Theorem 8.2.1 , Could be used to find the moments of 67.  

We have 

 (£(1) = Ã(Ϛ)) = Ã(	�) = �(@:Î). 
 

Theorem 8.2.3 

If � = Ã(	�) = ∑ eKT ,PT{�  :�; �� = ¡:?(	�) then 

 Ã�	
� = �
     
  (2.7) 

and ¡:?(	
) = N3³/(N3!�)N!� ��,           67 � ≠ 1 

   (2.8) 

   = ���,                          67 � = 1. 
Proof: Differentiating (2.4,) we get 

 (
£(@) = (
!�£ (((@))(£(@) 
whence (
£(1) = (
!�£ (1)(£(1) = �(
!�£ (1) 



 

96 

 

and on iterating (
£(1) = ��(
!�£ (1) 
  �
!�(£(@) = �
 . 
Thus Ã(	
) = (
£(1) = �
. 
Differentiating (2.5) twice and proceeding in a similar fashion, one can find 
the second moment (
££(1), and thus the variance of 	
 in the form (2.8). 

One can likewise proceed to get higher moments of 	
. 
Alternatively, the mean and the variance of 	
 can be obtained by nothing that 
	
H� is the sum of a random number of i. i. d. random variables, and using 
standard formulas. 

Let � ≠ 1. We can use the Corollary to Theorem 1.3 to find Ã(	
H�). 
Since 	
H� = ∑ Ϛ) ,y3){� we have 

 Ã(	
H�) Ã(Ϛ)) Ã(	
) = �Ã(	
). 
The solution of the difference equation is given by 

 Ã(	
) = »�
 ,        � = 1, 2, 3, … 

Since Ã(	�) =  Ã(Ϛ)) = �, » = 1. �ℎ>@ Ã(	
) = �
. 
Using the given in (relation (1.20)), chapter 1, we get 

 ¡:?(	
H�) = Ã(	
) ¡:?(Ϛ)) + �Ã(Ϛ))�º ¡:?(	
)
   (2.9a) 

   = �
�� + ��¡:?(	
)  
   (2.9b) 

We can find ¡:?(	
) from (2.9b) either by induction or by solving the non – 
homogeneous difference equation. We employ the latter method. A particular 

solution of the difference equation (2.9b) is given by ¡:?(	
) = �1N3
N!N1

  

And a general solution of the homogeneous equation corresponding to (2.9b) 
is given by ¡:?(	
) = ¸(��)
, where A is a constant. Thus complete 
solution of (2.9b) is given by 

 ¡:?(	
) = ¸(��)
 + �1N3
N!N1   

  (2.10) 
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Nothing that ¡:?(	�) = ��, we get ̧ = �� ��(� − 1)�⁄  so that (2.10) yields 

 ¡:?(	
) = N3³/(N3!�)N!� ��, � = 1, 2, … 

The result holds for all � :�; � ≠ 1. By taking limit as � → 1, one gets the 
corresponding result for � = 1. 
When � = 1, then ¡:?(	
) = ���. 
When � = 1, the variance of 	
 increases linearly and when � > 1 (� < 1) 
it increases geometrically with �. 
According as � < 1, = 1, <? > 1, the Galton – Watson process is referred to 
as subcritical, critical orsupercritical respectively.        ⃞ 
We now come to the problem originally posed by Galton. 
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BLOCK III  

UNIT – IX   PROBABILITY OF  

EXTINCTION AND STOCHASTIC IN 
M/M/1 – MODEL 

      9.1 Probability of Extinction 
              9.1.1 Definition: 
       9.2 Distribution of the Total Number of Progency 
        9.3 Conditional limit laws due to Kolmogrov and Yaglom 
 

9.1 PROBABILITY OF EXTINCTION 
  9.1.1 Definition: 
   By extinction of the process it is meant that the 
random sequence �	
� consists of zeros for all except a finite number of 
values of �. In order words, extinction occurs when (?�	
 = 0� = 1, for some 
value of �. Clearly, if 	
 = 0 7<? � > �; :A@< (?�	
H� = 0 | 	
 = 0� = 1. 
Theorem 9.1.2 

If � ≤ 1, the probability of ultimate extinctions is 1. If � > 1,the probability 
of ultimate extinction is positive root less than unity of the equation 

((@) = @.      (3.1) 

Proof: 

Let \
 = (?�	
 = 0), 6. 9. , \
 is the probability that extinction occurs at or 
before the ��� generation. Clearly \
 = (
(0), \� = (�(0) = ((0) = K�and 
from (2.5) 

 \
 = K(\
!�)    
 (3.2) 

If K� = 0, then \� = 0, \� = 0, . . , 6. 9.,if the probability of no offspring is zero, 
extinction can never occur. If 89 = :, ;<=7\� = 1, \� = 1, … , 6. 9., if the 
probability of no offspring is one then the extinction is certain to occur right 
the 0�� generation. So we confine ourselves to the case 0 < K� < 1. 
As ((@) is a strictly increasing function of @, \� = ((\�) = ((K�) > ((0) =\�. Assuming that \
 > \
!� we get \
!� = ((\
) > ((\
!�) = \
 and by 
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induction \� < \� < \ … The monotone increasing sequence �\
� is bounded 
above by 1. Hence \
 must have a limit A6�
→P = \ (@:Î), 0 ≤ \ ≤ 1; \ is 
the probability of ultimate extinction. From (3.2) it follows that \ satisfies  
\ = ((\), 6. 9. , \ is a root of the equation (3.1), 

  @ = ((@).  

We now investigate further about the root. First, we show that \ is the smallest 
positive root of (3.1). Let @� be an arbitrary positive root of (3.1). Then \� = ((0) < ((@�) = @� and assuming that  \N < @�, we get  \NH� =
((\N) < ((@�) = @� and by induction \
 < @� for all n. Thus \ = A6�
→P ≤
@�, which implies that \ is the smallest positive root of (3.2). 

For this, we consider the graph of Î = ((@) 6� 0 ≤ @ ≤ 1; it starts with the 
point(0, K�) and ends with the point(1,1); the curve lying entirely in the first 
quadrant, is convex as ((@) is an increasing function. So the curve Î = ((@) 
can intersect the line Î = @ in at most two points, one of which is the end point (1,1), 6. 9., the equation (3.1) has at most two roots, one of which is unity. Two 
cases are now to be considered (see Figs. 9.1 and 9.2). 
Case I. 

The curve Î = ((@) lies entirely above the line Î = @; in this case(1,1)is the 
only point of intersection, i. e., unity is the unique root of @ = ((@) so that 
Thus \ = A6�
→P\
 = 1. Then 

 ((1) − ((@) = 1 − ((@) ≤ 1 − @. 
So that A6�%→� �(�)!�(%)�!% ≤ 1, 6. 9. , (£(1) ≤ 1. 
Thus A6�
→P\
 = 1 Xℎ9� (£(1) = � ≤ 1.  
                                                 Y 

                                             1 (1,1)    

> = ?(û) 
> = û 

        
  

 0              (@ ≤ :) 1      s 

Fig, 9.1 Graphical determination of the roots of @ = ((û)�@ ≤ :º 
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                             y 

                                              1 (1,1)    

> = û 

> = ?(û) 
        
  

 0              q(@ > 1) 1      s 

Fig, 9.1 Graphical determination of the roots of @ = ((û)�@ > 1º 
Case II. 

The curve Î = ((@) intersects Î = @ at another pointL�, ((�)M@>=ℎ �ℎ:� � =
((�), � < 1, 6. 9., there is another root of (3.1) namely � < 1; the curve 
Î = ((@), being convex, lies below the line Î = @ 6� (�, 1), and above 
Î = @ 6� (0, �), 6. 9. , ((@) < @ 6� � < @ < 1 :�; ((@) > @ 6� 0 < @ < �. 
Then \� = ((0) < ((�) = � and assuming that \N < �, X9 Ç9� \NH� =
((\N) < ((�) = �and by induction \
 < � for all n. 

Hence A6�
→P\
 = �, @< �ℎ:� \ = � < 1. 
Now by the mean value theorem considered in the interval ��, 1º, there is a 

value A 6� � < A < 1 such that (£(A) = �(�)!�(�)�!�
= 1 and as the derivative is 

monotone (£(1) > 1. 
Thus we find that \ is the root less than unity of (3.1) when � = (£(1) > 1. 
We have thus proved the theorem completely.⃞ 
9.1.3 Note: 

That \ is a root of @ = ((@) can also be seen by conditioning on the number of 
off-springs of the first generation. We have 

 \ = Pr (>A�6�:�9 90�6�=�6<�) 
  = ∑ Pr�>A�6�:�9 90�6�=�6<� | 	� =PT{�e. (?	1=e. 
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Given that 	� = e, the population will extinct 677 each of the e families 
started by members of the 1%� generation becomes extinct. It is assumed that 
families behave independently; hence 

 Pr�>A�6�:�9 90�6�=�6<� | 	� = e� = \T . 
Thus \ = ∑ \TKT = ((\)PT{� . 
Theorem 9.1.4. 

Whatever be the value of Ã(	
) = �, X9 ℎ:¡9, :@ � → ∞, lim Pr�	
 = 0� =
\ and lim (?�	
 = e� = 0, for any finite positive integral e. 
Proof: We first show that A6�
→P(
(@) = \, from which the above result will 
follow. 

Consider the case � ≤ 1, Xℎ9� ((@) = @ has the unique root \ = 1. Û� 0 ≤
@ ≤ \, ((@) ≤ ((\) = \, :�;  
(�(@) ≤ (�(\) = (L(�(()M = ((\) = \. Assuming that (N(@) ≤\, X9 Ç9� (NH�(@) ≤ (@) ≤ \, and by induction (
(@) ≤ \ for all �. Again 
(
(@) ≥ (
(0) = \
; �ℎ>@ \
 ≤ (
(@) ≤ \. 
Hence A6�
→P(
(@) = \,        0 ≤ @ ≤ \. 
Consider the case � > 1, when \ is the root less than 1 of ((0) = 0. Û� \ <
@ < 1,  the curve Î = ((0) lies below the line Î = 0, :�; \ < K(@) < @ < 1. 
Again(�(@) = (L(�(@)M > ((\) = \. Assuming that (N(@) > \, we get 

(NH�(@) > \, so that, by induction (
(@) > \ for all n. Again (�(@) =(�L((@)M < (�(@) and assuming that (N(@) < (N!�(@), we get (
(@) <(
!�(@)for all n. 

Thus in  \ < @ < 1, 
 \ < (
(@) < (
!�(@) < ⋯ 

So that A6�
→P(
(@) ≥ \. 
Suppose, if possible, that A6�
→P(
(@) = + > \, 
then((+) < +, :�; A6�
→P(
H�(@) = A6�
HP (((
(@)),  
and we get a contradiction which is due to our supposition that + > \. Thus 

  A6�
→P(
(@) = \. 
So, whatever be the value of Ã(	�) = �, A6�
→P(
(@) = \ is independent of 
@. In other words, for all @ < 1,  
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A6�
→P ý (?�	
 = e� @T = \.
P

T{�  

This implies that the coefficients of @T for e ≥ 1(except, possibly, for 
infinitely large k) all tend to 0, while the constant term tends to \. 
Thus, as � → ∞, 
  (?�	
 = e� → 0, for finite positive integral k, 

and (?�	
 = 0� → \. 
Since (
(1) = 1, we have, as � → ∞, 
 (?�	
 → ∞� → 1 − \. 
9.1.5 Note: 

The above result also follows from the general theory of Markov chains 
applied to the chain �	
�, for which each of the states e = 1, 2, 3, … is 
transient while the state 0 is absorbing. We shall now consider another 
interesting result. 

Theorem 9.1.6 

We have, for ?, � = 0, 1, 2, … 

 Ã�	
H)  | 	
� = 	
�).     
 (3.4) 

Proof: For ? = 1 :�; � = 0, 1, 2, …, we have 

 Ã�	
H)  | 	
� = Ã*∑ ϚT  | 	
y3T{� 4 = ∑ Ã�ϚT �y3T{�  

  �	
. 
Assume that (3.4) holds for ? = e; �ℎ9� Ã�	
H) | 	
� = 	
�T. Nothing the 
Markov nature of �	
�, we get 

 Ã�	
HTH� | 	
� =
Ã�Ã�	
HTH� | 	
HT ,   	
HT!�, … , 	
� | 	
º 
  = Ã�Ã�	
HTH� | 	
HT� | 	
º 
  = Ã��	
HT | 	
º = �(	
�T) 
  = 	
�TH�, 

So that the result holds for ? = e + 1. 
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Thus by induction, we have the result. 

9.1.7 Asymptotic Distribution of 67 

Another variable of interest is Æ
 = y3
N3  , � = 0, 1, 2, … ; �Æ
� forms a Markov 

chain. We have Ã�Æ
� = 1 and for � > 1, 
 Ã�Æ
�� = �

N13  Ã�	
�� = �
N13 ���
 + N3³/(N3!�)�1(N!�) � 

 = 1 + �1N1!N  (1 − �!
). 
Dividing both sides of (3.4) by �
H) , we get     
   (3.5) 

 Ã�Æ
H) | Æ
� = Æ
 

and since �Æ
� is also a Markov chain, 

 Ã�Æ
H) | Æ
, Æ
!�, … , Æ�� = Ã�Æ
H)  | Æ
� = Æ
.
   (3.6) 

It follows that (Æ
, � ≥ 0) is also a martingale; further Æ
 being non – 
negative, is a non – negative martingale. 

Limiting distribution of 67 

One can now apply the martingale convergence theorem for the convergence 
of Æ. Thus we get that, with probability one,  

 A6�
→PÆ
 exists and is finite. 

Two cases arise: 

(i) � > 1: 
       then in order that Æ
 converges, 	
 must go to ∞ at an exponentially fast 
rate of n  

(@< �ℎ:� y3
N3 → : 76�6�9 A6�6�). 

(66)  � ≤ 1: 
           That as �
 → 0 :@ � → ∞. 
This implies ultimate extinction in the subcritical and critical cases. 
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9. 1. 8 Examples 

We now consider some simple example; to fix the ideas numerical values have 
been taken. 

Example 3(:). 
      Let KT , e = 0, 1, 2 be the probability that an individual in a generation 
generates e offsprings. Then ((@) = K� + K�@ + K�@�, :�; K�(@), K (@) can 
be calculated by simple algebra. The probability of extinction is one if � ≤ 1; 67 � > 1, it is given by the root less than 1 of @ = ((@). Suppose that K� = 2 3⁄ , K� = 1 6,⁄  and K� = 1 6⁄ ; �ℎ9� � = 1 2 < 1.⁄  The equation 
@ = ((@) becomes @� − 5@ + 4 = 0 with roots 1 and 4; the probability of 
extinction is 1. Suppose that K� = 1 4⁄ , K� = 1 4,⁄ K� = 1 2;⁄  then � =
5 4 > 1;⁄  the equation @ = ((@) has the roots 1 2⁄  and 1. The root 1 2⁄  gives 

the probability of extinction. Note that the probability of extinction is 
~|~1 or 1 

according as K� < K�  or K� ≥ K� and also that K� < (<? ≥)K� 677 � >(<? ≤) 
Example 3(b).  

Let the probability distribution of the number of off – springs generated by an 

individual in a generation be Poisson with mena ¹ 6. 9. ((@) = 9¶(%!�). It can 
be easily seen that the graph of ((@) in 0 ≤ @ ≤ 1 m6. 9. , d9�X99� �ℎ9 K<6��@ L0, 9!¶M:�; (1,1)n is convex, and that 

the curve of Î = ((@) always lies aboveÎ = @ Xℎ9� ¹ ≤ 1, there being no 
other root of @ = ((@) except unity in (0, 1); the probability of extinction is 
then 1. When ¹ > 1, the curve Î = ((@) intersects Î = @ in another point 
whose s – coordinate has a value < 1 and the probability of extinction will be 

this value of @. For example, if ¹ = 2, it can be seen that @ = 9�(%!�) has a root 
approximately equal to 0.2 which is smaller than 1, and the probability of 
extinction is \ = 0.2. 
Example 3(c). 

Let the distribution of the number of off – springs be geometric with KT =d(1 − d)T , e = 0, 1, 2, … (0 < d < 1). Then � = (�!�)�  :�; ((@) =�L�!%(�!�)M. The equation @ = ((@) has the roots 1 and 
�(�!�). If � ≤ 1, then the 

probability of extinction is 1; if � > 1, the root 
�(�!�) < 1, and the probability 

of extinction is equal to the root 
�(�!�). 

Example 3(d). 



 

105 

 

Let KT = d=T!�, e = 1, 2, … , 0 < d, =, d + = < 1 :�; K� = 1 − ∑ KTPT{� . Then � = �(�!�)1. 
We have 

 ((@) = 1 − ��!� + �%�!�%.    

 (3.7) 

The quadratic equation @ = ((@) has the roots 

 1 :�; �!(�H�)�(�!�) = @�(@:Î). 
If � = 1, �ℎ9� @� = 1 and the probability of extinction is 1; if � > 1, @� < 1, 
and the probability of extinction is \ = @�(< 1). 
         This model was applied in a series of interesting papers by Lotka to find 
out the probability of extinction for American male lines of descent. The 
values estimated by him (in 1939) from census figures of 1920 give     b =
 0.2126, c = 0. 5893 (m = 1.25 > 1) and the probability of extinction 
\ = @� = 0.819. 
9.1.9 Note: 

     It is not always possible to put the generating functions (
(@) in closed 
form. The generating functions ((@) obtained in Examples 3(c) and 3(d) are of 
interesting forms: they may be considered as particular cases of the more 
general fractional linear form (or general bilinear form) 

 ((@) = DH0%ØH�% , +� − -Ô ≠ 0. 
When ((@) is the above form, (
(@) is also of the same form 

 (
(@) = D3H03%Ø3H�3% 
Where +
 , -
,  Ô
 , �
 are functions of +, -, Ô, �. 
Further, it may be noted that the equation @ = ((@) (where P(s) is of fractional 
linear form) has two finite solutions 1 and @� <, =, > <? 1 according as 
� = (£(1) >, =, <? < 1. 
Example 3(e). 

(
(@) for Lotka’s model considered in Example 3(d) above. For any two 
points >, ¡, we get 
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�(%)!�(')�(%)!�(§) = %!'%!§  . �!�§

�!�' . 
Put > = @�, ¡ = 1, �ℎ9� ((@�) = @�, ((¡) = 1, @< �ℎ:� 

 
�(%)! %|
�(%)!� = %!%|%!�  . �!�

�!�%| 

Whence 
�!�

�!�%| = ��(%)! %|
%!%| � ��(%)!�(%!�) � .
  

Let � ≠ 1, then taking limits of the right hand side as @ → 1, we get 

 
�!�

�!�%| = �
N. 

Hence 
�(%)! %|
�(%)!� = m �Nn %!%|%!�  . 

Thus 
�1(%)!%|�1(%)!� = �L�(%)M!%|�L�(%)M!� = m �Nn �(%)!%|�(%)!�  

 = m �N1n %!%|%!�  

and on iteration  

 
�3(%)!%|�3(%)!� = m �N3n %!%|%!� , � = 1, 2, … 

Solving for (
(@), we get 

 (
(@) = 1 −�
 m �!%|
N3!%|n + N3m /³ç|z3³ç|n1%

�!m z3³/
z3³ç|n %  , � ≠ 1. 

  (3.8) 

If � = 1, �ℎ9� @� = 1 :�; ((@) = �H(�!��)%�!�%  

and ((@) = 
�H(�!�!
%)%(�!�H
%)!
�% .    

   (3.9) 

Limiting Results 

Suppose that � = 1, �ℎ9� �� = ��(�!�), 
 �(?�	
 > 0� = ��1 − (
(0)� = 
(�!�)�!�H
� 

and A6�
→P�(?�	
 > 0� = �!�
� = �

�1 (see Theorem 

9.8(a)) 
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Suppose that � < 1, �ℎ9� @� > 1 and 

   A6�
→P�!
(?�	
 > 0� = A6�
→P�!
�1 − (
(0)� 
      = A6�
→P �!%|

N3!%| = %|!�
%| . 

Again   ∑ (?�	
 = e | 	
 > 0�@T =T �3(%)!�3(�)�!�3(�)  

      = 1 − �!�3(%)�!�3(�) 

      = m /³ç|z3³ç|n %
�! m z3³/

z3³ç|n % . 

Thus   A6�
→P ∑ (?�	
 = e | 	
 > 0�@T =T @ m1 −
1@01−1@0−1 

and   A6�
→P (?�	
 = e | 	
 > 0� = m1 − �
%|n m �

%|nT!� , e =
1, 2, …. 
In other words, for large n, the distribution of �	
�, given 	
 > 0, is geometric 

with mean 
%|

%|!� and p. g. f. 

     d(@) = (�!� %|⁄ ) %
�!% %|⁄

 . 
It can be easily verified that d(@) satisfies the equation 

     d(((@)) = �d(@) + 1 − �          (see 
Theorem 9.9). 

9.2 DISTRIBUTION OF THE TOTAL NUMBER OF 
PROGENY 

Let 	
 denote the size of ��� generation, � = 0, 1, 2, … , :�; 	� = 1. 
Then the random variable 

   S
 = ∑ 	T = 1 + 	� + ⋯ + 	

T{�    
  (4.1) 

Denote the total number of progeny, i. e., the number of descendants up-to and 
including the ��� generation and also including the ancestor. 

Theorem 9.2.1. 
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 The p. g. f. �
(@) <7 S
 satisfies the recurrence relation 

   �
(@) = @(L�
!�(@)M,    

   (4.2) 

((@) being the p. g. f. of the offspring distribution. 

Proof:Let #
 = 	� + ⋯ + 	
 and ï
(@)  be its p. g. f. Then �
(@) = @ ï
(@). 
We have 

   ï
(@) = ∑ (?�#
 = e�@TPT{� . 
Now by conditioning on the size 	� of the 1%� generation, we get 

(?�#
 = e� = ∑ (?P${� { total number of descendants in the succeeding (� − 1) generations following the first is   e − 6 |	� =6.Pr	1=6. 
If the process starts with one ancestor then the probability of having ? 
descendants in succeeding � generations is the coefficient of @)6� ïN�@�; and 
if it starts with 6 ancestors then the probability of having ? descendants in the 

succeeding � generations will be the coefficient of @)6� [ïN�@�]$ . Thus  

  

 (?�#
 = e� = ∑ "=<9776=69�� <7 @T!� 6� �ï
!��@��$#K$P${�  

    

 = ∑ K$"=<9776=69�� <7 @T 6� �@ï
!��@��$#P${�  

    

 = =<9776=69�� <7 @T 6� ∑ K$�@ï
!��@��$P${�  

     = =<9776=69�� <7 @T 6� ( L@ï
!��@�M. 
Thus    ï
�@� = ∑ (?PT{� �#
 = e�@T = (L@ï
!��@�M, 
Whence  �
�@� = @ï
�@� = @(L�
!��@�M. 
Hence the theorem.⃞ 
From the recurrence relation (4.2) it is theoretically possible to calculate ���@�, ���@�, …. We are however interested in the asymptotic behavior of �
�@�for large n. 

Theorem 9.2.2  

We have 
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  A6�
→P�
(@) = �(@) 
Where �(@) = ∑ êT@TPT{�  is the generating function of the sequence of non – 
negative numbers êT , 
The function �(@) satisfies the relation 

   �(@) = @(L�(@)M, 0 < @ < 1;   

   (4.3) 

Further, �(@) is the unique root of the equation 

   � = @((�)      
  (4.4) 

Such that �(@) ≤ A, Xℎ9?9 A is the smallest positive root of 0 = ((0) and that 

   �(1) = ∑∑ êT@TPT{� = A. 
Proof:We have, for 0 < @ < 1, 
   ��(@) = @(L��(@)M < @((@) = ��(@) 
and assuming that �N < �N!�(@), we get 

   �N!�(@) = @((�N(@)) < @(L�N!�(@)M = �N(@) 
and hence by induction �N(@) < �
!�(@) 7<? :AA � > 0. Thus for @ <
1, ��N(@)� is a monotone decreasing sequence bounded below. Hence 
A6�
→P�
(@) = �(@) exists. From the continuity theorem of p. g. f. ‘s it  
follows that H(s), being the limit of a sequence of p. g. f. ‘s, is the generating 
function of a sequence of non – negative numbers êT such that �(1) = ∑êT ≤1. 
Taking limit of (4.2), we get 

   �(@) = @(L�(@)M,                  0 < @ < 1, 
i.e., for some fixed @(6� 0 < @ < 1), �(@) is a root of the equation 

   � = @((�) 
For fixed @ < 1, Î = @((�) is a convex function of � and the graph of Î =@((�) intersects the line Î = � in at most two points. Let A, be the smallest 
positive root of 0 = ((0); clearly A ≤ 1. The function � − @((�) is negative 
for � = 0 and positive for � = A, and remains positive for values of � between 
A and 1. Thus � = @ ((�) has exactly one root between 0 :�; A and no root 
between A and 1. The unique root of � = @ ((�) equals �(@) and thus �(@) <
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A. Clearly �(1) is a root of 0 = ((0) and since A is the smallest root of this 
equation, �(1) = A.Thus the theorem is completely established.⃞ 
9.2.3 Note:�(1) = 1 <? < 1 depending on whether 1 + 	� + 	� + ⋯ is finite 
or not (with probability one); and �(1) = 1 Xℎ9�9¡9? � ≤ 1. 
9.3 CONDITIONAL LIMIT LAWS – Kolmogrov and Yaglom 

9.3.1 Critical Processes 

In Example 3(e) we obtained some limiting results. We shall obtain here some 
general results. Consider a critical (i.e., with m=1) G. W. process. The 
probability of extinction is 1. Thus from Theorem 9.4, we get (?�	
 → 0� =
1. We also have ¡:?(	
) = ��� → ∞.The distribution of 	
, gives that 
	
 > 0, is of considerable interest. 

9.3.2 Lemma.  

For a G. W. process with � = 1 :�; �� < ∞, we have 

    A6�
→P �

 � �

�!�3(%) − ��!%� → �1�   

    (5.1) 

Uniformly in 0 ≤ @ < 1. 
Proof: 

Let 0 ≤ @ < 1 and (£££(1) < ∞. Using Taylor’s expansion of ((@) in the 
neighbourhood of 1,  

We get    ((@) = @ + �1� (1 − @)� + ?(@)(1 − @)�, 
    (5.2) 

Where    ?(@) → 0:@ @ → 1. 
Thus     

�
�!�(%)− ��!% = �(%)!%(�!%) (�(%)!%) 

     = �!%�!�(%) ��1� + ?(@)� 
     = ��1� + ?(@)� r1 − (1 − @) ��1� +?(@)−1 

     = �1� + �(@),    

   (5.3) 
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Where �(@) → 0 :@ @ → 1, :�; � is bounded. Again using (4.6), we get 

    (�(@) = (L((@)M = ((@) + �1� (1 − ((@))� +?L((@)M(1 − ((@))� 

So that     
��!�1(%) − ��!�(%) = �1� + �(((@)) 

    (5.4) 

 

and     
�� � ��!�1(%) − ��!%� = �1� + �� *�(@) + �L((@)M4. 

Iterating one gets  
�

 � �

�!�1(%) − ��!%� = �1� + �

∑ �L(T(@)M
!�T{� . 

Since (
(0) ≤ (
(@) ≤ 1:�; (
(0) → 1from the left, the convergence of (
(@) → 1 is uniform. Hence the lemma. 

We shall now use the lemma to establish the following interesting limit laws 
(of which (E) is due to Kolmogorov and (b), (c) are due to Yaglom). 

Theorem 9.3.3 

If � = 1, �� < ∞, then 

 (:)A6�
→P � (?�	
 > 0� = �
�1 

(d)A6�
→P Ã 5	
�  | 	
 > 0Þ = ��
2  

(=)A6�
→P (? 5	
� > > | 	
 > 0Þ = 90K á− 2>
��â , > ≥ 0. 

Proof: (:)(Kolmogrov) 

We have  �(?�	
 > 0� = ��1 − (
(0)� 
      = r�


 � �
�!�3(�)− 1� + �


s!�. 
Thus from the lemma (taking s=0), we get 

    A6�
→P � (?�	
 > 0� = A6�
→P r�1
� + �


s!� =
�
�1 . 
(d)(Yaglom)  
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We have   1 = Ã�	
� = Ã�	
| 	
 > 0�. (?�	
 > 0� +
0 . (?�	
 = 0� 
So that    Ã�	
| 	
 > 0� = �

�)�y3F�� = 
�1
�  , L7?<� (:)M. 

Thus     A6�
→P Ã �y3

  | 	
 > 0� = �1

� . 
(=)(S:AÇ<�)  �9� > > 0, :�;  ;7(>) = (? �> ≤ y3


 < > +
;> | 	�>0;   (5.5) 

Then taking L. T. (see equation (3.1a) Chapter1), we get 

   Ì 90KP� (−+>);�(>) = Ã �90K m− y3

 n |  	
 > 0�. 

  (5.6) 

 

Now    Ã �90K m− y3

 n� = Ã �90K m− y3


 n |  	
 > 0� .  (?�	
 >
0+1 .  (?	�=0 

And since  (
(@) = Ã�fy3� is the p. g. f. of 	
, we get 

  (
 á90K m− D

nâ = Ã �90K m− Dy3


 n | 	
 > 0� �1 − (
(0)� +
(
(0). 
Thus   

Ã 590K á− +	
� â | 	
 > 0Þ = (
L90K(−+ �⁄ )M −  (
(0)1 − (
(0)  

     = 1 − �! �3L²Å~(!D 
⁄ )M�!�3(�)  .  

 (5.7) 

Now as � → ∞ 

    � �1 − (
 á90K m− D

nâ� → �

�1  (7?<�(:)) 
and from the basic lemma (because of uniform convergence),we get 

 
�


*�!�3L²Å~(!D 
⁄ )M4 =  �

 5 �

�!�3L²Å~(!D 
⁄ )M− ��!²Å~(!D 
⁄ )Þ + � 
⁄
�!²Å~(!D 
⁄ ) 

    → �1� + �
D. 
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Thus from (5.6) and (5.7), we get, � → ∞ 

   Ì 90KP� (−+>);�(>) → 1 − �1 �⁄
�1 �⁄ H� D⁄ . 

    = ��HD�1 �⁄  . 
Since L. T. of  

�
�1  90K m− �'

�1n  6@ �
�HD�1 �⁄  , 

We have  A6�
→P (? �> ≤ y3

 < > + ;> | 	
 > 0� =

�
�1  90K m− �'

�1n,  
Which establishes the exponential limit law.⃞ 
9. 3. 4 Subcritical Processes 

Theorem 9.3.4(Yaglom’s Theorem).For a Galton – Watson process with  
� < 1, 
   A6�
→P (? �	
 = I| 	
 > 0� = dJ ,           I = 1, 2, … 

  (5.8) 

Exists, and*dJ4 gives a probability distribution whose p. g. f. 

   �(@) = ∑ dJ@JPJ{�  satisfies the equation 

    �L((@)M = ��(@) + 1 −�   

  (5.9) 

i. e.,    1 − �L((@)M = �L1 − �(@)M. 
Further   
 ∑  IdJ = 1 /(0), Xℎ9?9 /(0) =⁄PJ{!� A6�
→P (?�	
 > 0� �
.⁄  

Proof:Using Taylor’s expansion around @ = 1, we get 

   ((@) = 1 −�(1 − @) + (1 − @) ?(@), 0 ≤ @ ≤ 1 
  (5.10) 

or,   
�!�(%)�!% = � − ?(@).     

  (5.10a) 

Consider the function ?(@) 6� 0 ≤ @ ≤ 1; we have ?(0) = � − (1 − K�) ≥ 0 

and A6�%→�!� ?(@) = 0.  Further as ((@) is a convex function 
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   (£(@) ≤   � ! �(%)�!% ,    
So that   (£ (@) = (1 − @)!� �� ! �(%)�!% − (£(@)� ≤ 0. 
Thus ?(@) is monotone decreasing, and is bounded above by � :�; ?(@) →0 :@ @ → 1. Replacing @ dÎ (T!�(@) in (5.10a), we get 

   
� !  ��(%)�! ��³/ (%) = ��1 − ? ( (T!� (@)/��.   

  (5.11) 

Putting e = 1, 2, 3, … , � and taking products of both sides, we get 

   
� ! �3(%)�!% = �
 ∏ �1 − ?( (T(@))/��.
{�T{�  

Since 0 ≤ ?/� ≤ 1, the sequence  �� ! �3(%)N3 (�!%)� is monotone decreasing in  �, 

and we have 

   A6�
→P � ! �3(%)N3 (�!%) = /(@) ≥ 0. 
Putting @ = 0, we get 

    /(0) = A6�
→P � – �3(�)N3 A6�
→P wx|y3F�|N3  . 
Let dJ
 = (?�	
 = I| 	
 > 0� :�; �
�@� = ∑ dJ
PJ{� @J be the p. g. f. of  *dJ
4. Then 

   �
�@� = �3�%� ! �3����!�3��� = 1 − � ! �3�%��! �3�%�   

  (5.14) 

    = 1 − �1 − @�∏ �!)� ���%��/N�!)� ������/N
{�T{�          (from 

5.12). 

Since (T�@� ≥ (T�0�, :�; ?�@� is monotone decreasing, ?��(�T�@�� ≤?�(T�0��, and so each factor of the product on the r. h. s. expression is larger 
than 1. Thus �
�@� is monotone decreasing and tends to a limit ��@� as � → ∞, i. e., 

   ��@� =  ∑ dJPJ{� @J ,    Xℎ9?9 dJ = A6�
→P dJ� = A6�
→P (?�	
 = I| 	
 > 0� . 
Clearly ��0� = 0. 
Now,   �L(T�0�M = A6�
→P�
L(T�0�M 
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    = A6�
→P �1 − �!�3L��(�)M�!�3(�) � 
    = 1 − A6�
→P �1 − �!��L�3(�)M�!�3(�) � 
    = A6�%→� � ! ��(%)�!%   (@6�=9 � < 1,
(
(0) → 1 :@ � → ∞) 
    = 1 −�T 

      (taking limit of (5.12) as s→ 1). 

It follows that lim�L(T(0)M → 1. ¸@ � < 1, (T(0) → 1 :@ e → ∞. 
Hence �(@) → 1:@ @ → 1. Thus �(@) is the p. g. f. of LdJM. 
Further  ∑  IdJ = �£(1) =PJ{� A6�T→P �!HL��(�)M�!��(�)  

    = A6�T→P N�
�!��(�) 

    = A6�T→P N�
�)�y�F��  →  �

.(�) . 
Again, from (5.14) 

   �
L((@)M = 1 − � ! �3 (� (%))�! �3(�)  

    = 1 − � ! �3Ù/ � (%)�! �3Ù/(�)  . � ! �3Ù/ � (�)�! �3(�)   

 (5.15) 

 

A6�
→P 
1 − (
H� ( (@)1 −  (
H�(0) = A6�
→P L1 − �
H�(@)M = 1 − �(@), 

  A6�
→P � ! �3Ù/ � (�)�! �3(�) = A6�%→� �!�(%)�!% = �. 
Hence taking limits of both sides of (5.15), We get 

   �L((@)M = 1 − L1 − �
H�(@)M � 

    = ��(@) + 1 −�. 
Thus the theorem is proved.⃞ 
9.3.5 Remarks: 
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1. The above simplified proof which does not involve moment restriction is 
due to Joffe( 1967). 

      The equation (5.9a) is known as a modified Schroder functional equation. 
It is not always easy to obtain �(@) from it for given ((@). In example 3(e) we 
obtained �(@) directly. 

The mean ∑ edT = �
.(�)PT{�  of the limiting distribution is finite 677 

   Ã�	� A<Ç	�� = ∑ (T�e log e� < ∞ <? K� = 1.PT{�  

2. The limiting behavior which has customarily been studied through 
probability generating functions and their functional iterates, has now been 
studied also through the martingale convergence theorem; the latter is more 
revealing on the nature of the process. Sec, for example, Heyde (1970) and 
Grey (1980). 

         Before closing the discussion on G. W. processes we mention a few 
interesting innovations introduced in the process. 
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UNIT  X : THE CLASSICAL GALTON 
AND WATSON PROCESS 

         10.1 THECLASSICAL GALTON – WATSON PROCESS 
                           10.1.1 Branching Processes with Immigration 
          10.2 BEL MAN HARI’S PROCESS 
                

10.1 THECLASSICAL GALTON – WATSON PROCESS 
10.1.1 Branching Processes with Immigration 

Theorem 9.4 states that for a G. W. Process, Pr�	
 → 0� = \ :�; (?�	
 →
e=0, for finite k :�; @< (?	�→∞=1−\,\ being the probability of extinction. 
Further, \ = 1 for critical and subcritical processes. Thus left to themselves G. 
W. populations either die out or grow without limits, Immigration from 
outside into a critical or subcritical process could have stabilizing effect on the 
population size. Apart from this aspect, immigration by itself is interesting 
from the point of view of theory and applications. Galton – Watson processes 
with immigration often arise in applications in such areas as traffic theory, 
statistical mechanics, genetics, neurophysiology etc. 

           Consider a G. W. process with off-spring distribution 
�KT�(ℎ:¡6�Ç K. Ç. 7. ((@) :�; �9:� (£(1) = � ).(The process will be called 
underlying G. W. process.) Suppose that at time n, I. e., at the time of birth of 
��� generation there is an immigration of S
 objects into the population, and 
that S
, � = 0, 1, 2, … are i. i. d random variables with p. g. f. 

    ℎ(@) = ∑ (?�S
 = I�@J = ∑ℎJ@J ,PJ{�  

i. e., with probability  ℎJ , I  immigrants enter the ��� generation and contribute 

to the next generation in the same way as others already present do. The 
numbers of immigrants into successive generations are independent and all 
objects reproduce independently of each other and of the immigration process. 

The distribution  *ℎJ4  will be called immigrant distribution. Let : = ℎ£(1) be 

the mean of this distribution.  

       Such a process (G. W. I.)  can be denoted as 

    �	
H�, � = 0, 1, 2, … � 
Where    	
H� = ∑ J) +y3){� S
H�   

   (5.16) 
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And     Ã(J)) = �, Ã�S
� = :. 
Let 	(
) be the number of objects at the ��� generation and let 

    ((
)(@) = ∑ (?*	(
) = I4@JPJ{�  

Be its p. g. f. The sequence ( 	(
), � = 0, 1, 2, … � defines a G. W. I process. 

The sequence is a Markov chain whose one – step transition probabilities are 
given by 

   K$J = =<977. <7 @J  6� ℎ(@)�((@)º$, 6, I ∈ ". 
Clearly,   ((
)(@) = ℎ(@)((
!�)L((@)M. 
If   A6�
→P ((
)(@) = �(@) exists, then one gets 

   �(@) = ℎ(@) �(((@)) 
i.e., the limit, when it exists, satisfies the above functional equation. 

Now the question arises : when does the limit exist, and does it define the p. g. 
f. of a proper probability distribution or when does �	(
),� have a proper limit 

distribution? 

10.2. BELL-MAN HARRIS PROCESS  

        In the preceding section we assumed that the lifetimes of objects 
(particles, individuals, organisms) are exponential random variables. Here we 
shall generalize his further; we shall consider that the lifetimes have general, 
and not necessarily exponential, distributions. 
                   Suppose that an object (ancestor) at time t = 0 initiates the process. 
At the end of its lifetime it produces a random number of direct descendants 
having offspring distribution {pk} (with p.g.f. P (s)). 

We assume, as before, that these descendants act independently of each other 
and that at the end of its lifetime, each descendant produces its own 
descendants with the same offspring distribution {pk} , and that the process 
continuous as long as objects are present. Suppose that the lifetimes of objects 
are i.i.d.random variables with d.f. G(which is also independent of the 
offspring distribution).Let { X  (t) , t ≥ 0} be the number of objects alive at 
time t. The stochastic process { X  (t) , t ≥ 0} is known as an age-dependent 
(or general time ) branching process. Such a process is also known as a 
Bellman-Harris process, after Bellman and Harris who considered such a 
process in 1948. We shall consider here Bellman-Harris type age-dependent 
process. An age-dependent process is , in general ,not Markovian. For a 
detailed account , refer to Sankaranarayanan (1989, Chapter 4). 



 

119 

 

10.2.1 Generating Function 

        Theorem  10.2.1.  

The generating function 

                                 F (t, s)  =  ∑ Pr� 	 (�) = e � @TPT{�  (8.1) 

of an age-dependent branching process { X (t) = [1 – G(t)]s + Ì (L �(� −��>, @;ï>.                    (8.2) 

proof:  To find � X (t)  =  k�, we shall condition on the lifetime T at which the 
ancestor dies bearing I offsprings. 

 We have 

Pr� 	 (�) = e �= Ì Pr� 	 (�) = e|� = >� ;ï�>�P�  

    =Ì Pr� 	 ��� = e|� = >� ;ï�>���  

     =Ì Pr� 	 ��� = e|� = >� ;ï�>�P� . 
In case of the second term,u >  �. Given that T = u, the number of objects at 
time t is then still I (the ancestor ) and the expression under the square brackets 
equal ��T{ 1 – G(t)}.  

                In case of the first term, u ≤ �,  the ancestor dies at time u ≤ t, leaving I (� ") direct descendants: the probability of this is pi d G �u�; and 
further these I descendants (who independently initiate processes at time  u) 
leave k objects in the remaining time � − >: the probability of this event is 

equal to the coefficient of @T in the expansion of [� �� − >, @�]$ as a power 
series in s. Thus we have, Pr� 	 ��� = e � = �1 − ï������T 

+ Ì ∑ K6 ; ï�>� �=<977. <7 @T $
 ��² ²Å~
%$b
 b÷ [� ��!',%�]Ð P${��� } 

               Multipliying both sides by @T , k = 0.1.2 . . . and summing over k, we 
find that the l.h.s. equals � ��, @�; 
And that the first term on the r.h.s. equals � 1 − ï����s and the second term 
equals 

O[ý K6 �ý[ =<977 <7 @T $
 � � ��!',%�ÐP
T{�

P
${�

�
�

�] @T  �];ï�>� 

                                       =      Ì [∑ K6 �PT{� ��� −  >, @��$  �� ];ï�>� = Ì (L ��� − >, @�M;ï�>�.��  

Hence the theorem.⃞ 
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UNIT – XI STOCHASTIC PROCESSES IN 
QUEUEING SYSTEMS 

            11.1  Stochastic Models- Queuing Systems 
            11.2   Queueing Model M/M/1 
                      11.2.1 Notation 
                      11.2.2 Steady State Distribution 
                      11.2.3 Little’s Formula 
            11.3   Transient Behaviour Of M/M/1 
 

11.1   STOCHASTIC MODELS - QUEUING SYSTEMS 

The queueing theory had its origin in 1909, when A. K. Erlang (1878 - 1929) 
published his fundamental paper relating to the study of congestion in 
telephone traffic. The literature on the theory of queues and on the diverse 
areas of its applications have grown tremendously over the years. 

A queue or waiting line is formed when units (or customers, clients) needing 
some kind of service arrive at a service channel (or counter) that offers such 
facility. A queueing system can be described by the flow of units for service, 
forming or joining the queue, if service is not immediately available, and 
leaving the system after being served . The basic features which characterize a 
system are; (i) the input, (ii) the service mechanism, (iii) the queue discipline 
and (iv) the number of service channels. 

        By units, we mean those demanding service, e. g. customers at a bank 
counter or at a reservation counter, calls arriving at a telephone exchange, 
vehicular traffic at a traffic intersection, machines for repair before a 
repairman, airplanes waiting for take – off at a busy airport, merchandise 
waiting for shipment at a yard, computer programmes waiting to be run on a 
time – sharing basis etc.  

       The  input describes the manner in which units arrive and join the system. 
The interval between two consecutive arrivals is called the inter-arrival time or 
interval. The system is called a delay or loss system depending on whether a 
unit who, on arrival, finds the service facility occupied, joins or leaves the 
system. The system may have either a limited or an unlimited capacity for 
holding units. The source from which the units come may be finite. A unit may 
arrive either singly or in a group. 

The service mechanism describes the manner in which service is rendered. A 
unit may be served either singly or in a batch. The time required a unit is 
called the service time. 
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The queue discipline indicates the way in which the units form a queue and are 
served. The usual discipline is first come first served (FCFS) or first in first 
out (FIFO), though sometimes, other rules, such as, last come first served or 
random ordering before service are adopted. A more realistic service 
discipline, called processor – sharing, is considered in computer science 
literature; this envisages that if there are �jobs, each receives service at the 

rate of 
�N. 

The system may have a single channel or a number of parallel channels for 
service. 

The inter-arrival and service times may be deterministic or chance – 
dependent. The case when both the inter-arrival and service times are 
deterministic is trivial. We shall be generally concerned with chance – 
dependent inter-arrival and service times, and the theory will be essentially 
stochastic. When chance – dependent, the inter-arrival times between two 
consecutive arrivals are assumed to be i. i. d. random variables; the service 
times of units are also assumed to be i. i. d. random variables. Further the two 
sets of 

random variablesare also taken to be independent. 

              The mean arrival rate, usually denoted by ¹, is the mean number of 
arrivals per unit time. Its reciprocal is the mean of the inter-arrival time 
distribution.  The mean service rate, usually denoted  by�, is the mean number 
of units served per unit time, its reciprocal being the mean service time. In a 
single channel system, the ratio 

  : = ¶
� = }))$§}P )}�²

%²)§$�² )}�² =  N²}
 %²)§$�² �$N²
N²}
 $
�²)}))$§}P �$N²Is called the offered 

load or traffic intensity. Though dimensionless, it is expressed in erlangs. It 
can be seenthat if ¹ > �, then the queue size will go  to infinity. The  quantity 
ê = :/= is called carried load. 

11. 2 QUEUINGPROCESSES 

The following random variables or families of random variables that arise in 
the study provide important measures of performance and effectiveness of a 
stochastic  queuing system. 

  1. The number "(�) in the system at time t, i. e. the number at time t waiting 
in the queue including those being served, if any. 
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 2.  The busy period which means the duration of the interval from the moment 
the service commences with arrival of an unit at an empty counter to the 
moment the server becomes free for the first time. 

  3.  The waiting time in the queue, i. e. the duration of time a unit has to spend 
in the queue; also the waiting time Æ
 of the ��� arrival. 

  4.   The virtual waiting time Æ(�), 6. 9. the interval of time a unit would have 
to wait in the queue, were it to arrive at the instant t. 

One needs to have their complete probabilistic description. It is clear that 
�"(�), � ≥ 0�, �Æ(�), � ≥ 0�, �Æ
, � ≥ 0�  are stochastic processes, the first 
two being in continuous time and the third one in discrete time. It will be seen 
that some of the queuing processes that we would come across are Markovian 
and some are semi – Markovian. From some of the non – Markovian processes 
that arise, Markov chains can be extracted at  suitable regeneration points and  
semi – Markovian processes can be constructed there from. The theory of 
Markov chain and semi – Markov processes thus plays an  important role in 
the study of queuing processes. 

11.2.1 Notation 

A very convenient notation designed by Kendall to denote queuing system has 
been universally accepted and used. It consists of a three – part descriptor 
A/B/C, where the first and second symbols denote the inter-arrival and service 
time distributions respectively, and third  denotes the number of  channels or 
servers. A and B usually take one of the following symbols: 

  M : for exponential  ( Markovian) distribution 

  ÃT : for Erlang – k distribution 

  G   : for arbitrary distribution 

  D   :  for fixed  (Deterministic)  interval 

    Thus, by an V/ï/1 system is meant a single channel queuing system 
having exponential inter-arrival time distribution and arbitrary service time 
distribution. By  M/G/1/k is meant the same system with the fourth descriptor 
R denoting that the system has a limited holding capacity k. 

11.2.2 Steady State Distribution 

"(�), the number in the system at time � and its probability distribution, 
denoted by 

   K
(�) = (?�"(�) = � | "(0) = . � 
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are both time dependent. For a complete description of the queuing process we 
need consider transient or time – dependent solutions. It is often difficult to 
obtain such solutions. Further, in many practical situations, one needs to know 
the behaviour in steady state, i. e. when the system reaches an equilibrium 
state, after being in operation for a pretty long time. 

It is easier  and convenient to determine 

   K
 = lim K
(�)         :@ � → ∞ 

Provided the limit exists. It is necessary to know the condition for the 
existence of the limit in the first place. This will be discussed in due course. 
When the limit exists, it is said that the system has reached equilibrium or 
steady state  and the problem then boils down to finding the steady state 
solutions. 
11.2.3 Little’s Formula 

There  are certain useful statements and relationships in queuing theory which 
holds under fairly general conditions. Though rigorous mathematical proofs of 
such relations are somewhat complicated, intuitive and heuristic  proofs are 
simple enough and have been known for long. It has been argued also  that 
conservation methods  could very well be applied to supply proofs of some of 
these relations. Conservation principles have played a fundamental role in 
physical and engineering science as well as in economics etc. Similar 
principles may perhaps be applied in obtaining relations for queuing system  in 
steady state. Some such relations are given below. The most important one is 

   � = ¹ Æ 

Where ¹ is the arrival rate, L is the expected number of units in the system and 
W is the expected waiting time in the system in steady state. A rigorous of the 
relation has been given by Little(1961) and so the relation is known as Little’s 
formula. This result, of great  generality, is independent of the form of inter-
arrival and service time distributions, and holds under some very general 
conditions. 

 Denote the expected number in the queue and the expected waiting 
time in the  queue in steady state by �Q :�; ÆQ respectively . These are 

related by a similar formula: 

   �Q = ¹ ÆQ.⃞ 
11.3 TRANSIENTBEHAVIOUR 

 In this section we consider the transient behavior of three specific 
queueing systems,namely,  
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       V / V / 1 / 1 (no one allowed to wait), V / V / 1 / ∞. This discussion I 
restricted to these two models, Since the mathematics becomes extremely 
complicated with the slightest relaxation of Poisson – exponential 
assumptions, and it is our feeling that the exhibition of some fairly simple 
results is sufficient for our purposes. Even  these three transient derivations 
vary greatly in difficulty. The  V /V / 1 / 1 solution can be found fairly 
easily, but the problem becomes much more complicated when the restriction 
on waiting room is relaxed, or multiple servers are considered  

11.3.1  Transient Behavior of  R / R / : / 1 

The derivation of the transient probabilities �K
 (�)� � that an arbitrary time t 

there are n customers in a single-channel system with Poisson input, 
exponential service, and no waiting room is a straightforward procedure, since  
K
   (�) = 0 7<? all n > 1. It begins in the usual fashion from the birth-death 

differential equations as given by , with Å� = Å,  , Å
 = 0, n > 0, and �� = �: 
;K�(�);�  =  −�K�(�) +  ÅK�(�), 

Õ~|(�)Õ� =  −ÅK�(�) +  �K�(�)                                             (2.70) 

These differential-difference equations can be solved easily in view of the fact 
that it is always true that  

K�(�) +  K�(�) = 1. 
Hence (2.70) is equivalent to 

Õ~/(�)Õ�  ≡  K�£ (�) =  −�K�(�) +  Å�1 −  K�(�)]. 
 So 

   K� £(�) + LÅ +  �MK�(�) =  Å. 
This is an ordinary first-order linear differential equation with constant 
coefficients. Its solution can be obtained from the discussion in Section 1.7 as 

   K�(�) = »9!LÅH�M� +  Å
ÅH� 

To determine C , we use the bountry value of K�(�) at t=0,which is K�(<). 
Thus  

                                                         C = K�(0) −  Å
ÅH�¨ 
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and consequently 

K�(�) =  ÅÅ +  � m1 − 9!LÅH�Mµn + K�(0)9!LÅH�M�, 

K�(�) =  �Å +  � m1 − 9!LÅH�Mµn + K�(0)9!LÅH�M�, 
Since  K�(�) = 1 −  K�(�)  for all t. 

 The stationary solution can be found directly from (2.70)in the usual 
way by letting the derivatives equal zero and then, using the fact that K� + K� = 1 ,solving for K� :�; K�(V / V / 1 / e X6�ℎ T = 1) . Also, the limiting 
(steady, state, equilibrium)solution can be found as the limit of the transient 
solution of (2.71) as t goes to ∞, we find that  

K� =  U
UH�     and    K� =  �

UH� 

Existence of the limiting distribution is always assured, independent of the 

value of ê =  Å �⁄ , and thus it is identical to the stationary distribution (to see 
this , put K = 1 in the K
 expression for the V / V / 1 /  T of section 2.5). 
                To get a better feel for the behavior of this queueing system for 
small values of  time, let us graph K�(�) from (2.71). First rewrite (2.71) in the 
form 
  K�(�) =  K� + d9!��, 
Where, 

  K�(�) =  Å
ÅH � = U

UH� ,        d =  K�(0) −  K�,     :�;  = =  Å +  � 

Figure 2.9 shows a sample graph of   K�(�) for a case where d >  0(Å =
 0.2, � = 0.4, K�(0) = 0.7). 
We see that K�(�) is asymptotic to K�. In addition , if the initial probability K�(0) equals the stationary probability  K�, then b = 0 and K�(�) equals the 
constant K�for all t. In other words , the queueing process can be translated 
into steady state at any time by starting the process in equilibrium. This 
property is , in fact, true for any ergodic queueing system, independent of any 
assumptions  about its parameters. 
 
11.3.2 Transient Behavior of  V / V / 1 / ∞ 
  The transient derivation for V / V / 1 / ∞ is  quite  a 
complicated procedure, so presentation of it is in outline form only. A more 
complete picture of the details can be found in Gross and Harris (1985) and 
Saaty (1961). The solution of this problem postdated that of the basic Erlang 
work by nearly half a century, with the first published solution due to 
Ledermann and Reuter (1954), in which they used spectral analysis for the 
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general birth-death process. In the same year, an additional paper appeared on 
the solution of this problem by Bailey (1954), and later one by Champernowne 
(1956) Bailey’s approach to the time-dependent problem was via generating 
functions for  
the partial differential equation, and champernowe’s was via complex 
combinatorial methods. It is Bailey’s approach that has been the most popular 
over the years, and this is basically the one we take. Remember that the key 
thing that makes this problem more difficult than may seem at first is that we 
are dealing with an infinite system of liner differential equations. 
                 To begin, let it be assumed that the initial system size at time 0 is i. 
That is, if N(t) denotes the number in the system at time t, then N(0) = i. The 
differential-difference equations governing the system size are given in (1.30) 
as  

                  K
£ (�) = −(¹ + μ)K
(�) +  ¹ K
!�(�) + μ K
H�(�) (� > 0) K�£ (�) = − ¹ K�(�) + μ K�(�) 
It turns out that we solve these time-dependent equations using a combination 
of probability generating functions , partial differential equations, and Laplace 
transforms. 
Define 
   ((�, �) = ∑ K
(�)�
P
{�   (z –complex) 
Such that the summation is convergent in and on the unit circle(i.e., for |z| ≤  ) 
, with its Laplace transform defined as 

((�, @) = O 9!%�((�, �);� (  �9(@) > 0)P
�

V
 

 
After the generating function is formed from(2.72)   ̶̶ it is found when the 
Laplace transform is taken that  

                                                         ((#, @) = �XÙ/!Y(�!�)~|ZZZZ(%)(¶HYH%)�!Y!¶�1V
,  where  K�[[[ (s) is the 

Laplace transform of K�(t). 
         Since the Laplace transform K̅(�, @) converges in the region |z| ≤ 1, Re s 
> o, 
Wherever the denominator of the right-hand side of (2.73) has zeros in that 
region, so must the numerator. This fact is henceforth ued to evaluate K�[[[(s). 
The denominator has two zeros, since it is quadratic in z and they are(as 
functions of s) 

�� = ¹ +  μ + @ − Ü(¹ +  μ + @)� − 4¹ μ
2¹  

�� =  ¹ +  μ+ @ + Ü(¹ +  μ + @)� − 4¹ μ
2¹  

Where, the square root is taken so that its real part is positive. It is clear that  |��| < |��|, �� + ��=( ¹ +  μ + @�/¹  and  ����=μ/¹  . The completion of 
derivation is by the use of Rouches theorem in complex analysis. 
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BLOCK IV   

UNIT  XII BIRTH AND DEATH 
PROCESSES IN QUEUING THEORY 

             12. 1 Birth and Death Processes 

   12.2  R/R/: Model 

   12.3 R/R/∞  Model 

    12.4  R/R/û/û Loss System 

    12.5 M/M/s/N Model. 

12. 1 Birth and Death Processes 

Let us first consider a birth and death process with state dependent birth and 
death rates ¹
 :�; �
 respectively. Let"(�) be the number present at the 
instant t, and 

   K
(�) = Pr�"(�) = � | "�0� = . � 
It was shown in Ch. 3 that �"���, � ≥ 0� is a Markov process with 
denumerable state space �0, 1, 2, … � and that the forward Kolmogorov 
equations of the process are: 

   K�£ ��� = −¹�K���� + ��K���� 

   K
£ ��� = −�¹
 + �
�K
 ��� + ¹
!�K
!���� +�
H�K
H����, � = 1, 2, … 

(see equations (4.4) and (4.6), Chapter 3). 

 We proceed to investigate the steady state solutions. Assume that such 
solutions exists, then A6��→PK
��� = K
 = Pr�" = �� , "being the random 
variable giving the number of units. Putting K
��� = K
  :�; K
£ �7� = 0, we 
get from the above the following difference equations in steady state: 

   0 = −¹�K� + ��K�     
        (2.1) 

   0 = − �¹
 + �
�K
 + ¹
!�K
!���� + �
H�K
H�, � =1, 2, …        (2.2) 
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Alternatively, we can obtain the steady state balance equations by using the 
rate – equality principle. 

¹�   

               ….                                                                                          
…. 

    

 

  Fig. 10. 1 State – transition – rate diagram of birth – death 
process 

Form the state – transition – rate diagram  (Fig . 10. 1 ) it is clear that, 

  for  � = 0,   ¹�K� = ��K� 
And   for  � > 0,   (¹
 + �
)K
 + ¹
!�K
!�(�) +�
H�K
H�, 
(which are the equations (2.1) and (2.2)). 

From (2.2), we have for � = 1, 2. ., 
  �
H�K
H� − ¹
K
 = �
K
 − ¹
!�K
!� 

    = �
!�K
!� − ¹
!�K
!�        (K>��6�Ç � −
1 7<? �) 
    = ��K� − ¹�K� 

    = 0    L7?<� (2.1)M, 
So that   K
H� = ¶3

�3Ù/ K
  

    =  m ¶3
�3Ù/n m¶3³/

�3 n K
!� 

            …           ….          …. 

    = ¶3¶3³/….¶|
�3Ù/�3….�/ K� 

Or   K
 = ∏ ¶�³/
��


T{� K�,       � = 1, 2, ….   

  (2.3)    

Since ∑ K
P
{�  must be unity, 

0 1 2 
n-1 n n+1 
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   �1 + ∑ ∏ ¶�³/��
T{�P
{� � K� = 1.   

   (2.4) 

Hence a necessary and sufficient condition for the existence of a steady state is 

the convergence of the infinite series ∑ ∏ ¶�³/��
T{�P
{� . When it converges, K�
  can be found from (2.4). 

The queuing processes arising in some of the standard models can be 
considered as birth and death processes and the steady state solutions can be 
obtained easily by using the above. In the M/M/1 model considered in Sec. 10. 2, ¹� = ¹, � = 0, 1, 1, … , :�; �
 = �, � = 1, 2, …. Putting these values in 
(2.3) and (2.4) we at once get the steady state solutions. 

12. 2. M/M/1 Model 

 In order to study the M/M/1 model , first look into the general model 
namely    M/M/s model  

Here we consider a queuing model with @(1 ≤ @ ≤ ∞) servers or channels in 
paralleland having identical input and service time distributions (as in the 
model M/M/1). In other words, the present model (M/M/s) considers a Poisson 
process with  parameter ¹ as its input process and has, for each of the s 
channels, i. i. d. exponential service time distribution with mean rate �. If 
�(≤ @) channels are busy, the number of service completed in the whole 
system is given by a Poisson process with mean �� and the time between two 
successive service completions is exponential with mean 1/��; whereas if  
�(≤ @) channels are busy, the time between two successive service 
completions is exponential with mean  1/@�. If "(�) is the number present in 
the system at the instant t, the transition densities are as follows: 

   :
,
H� ;� ≡ (?�"(� + ;�) = � + 1 | "(�) = �� =
¹;� + <(;�) 
   :
,
H� ;� ≡ (?�"(� + ;�) = � − 1 | "(�) = �� =
�
;� + <(;�) 
   :
,N ;� ≡ (?�"(� + ;�) = � | "(�) = �� = +<(;�),
� ≠ � − 1, � + 1 

Where   �
 = ��, 67 0 ≤ � ≤ @ 

  = @�, 67     � ≥ @. 
Thus "(�) is a birth and death process with constant arrival (birth) rate ¹
 = ¹ 
and state – dependent service (death) rates as given in (2.5). 
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Let K
(�) = Pr�"(�) = � | "�0� =. �, and let the steady state solutions exist. 
The state – transition rate diagram is given in Fig. 10. 2. 

  

¹ ¹   ¹  ¹  ¹ 

               …. 

 

�           2�  �@ − 1�� @�  @�  

 Fig. 10. 1 State  transition – rate diagram of  an  M/M/s   model 

Putting the values of ¹
 :�; �
 in (2.3) and (2.4) we get  K� :�; K
 , � =1, 2, …,  as follows. Denote ¹ @�⁄ by ê. 
For � ≤ @, 
  K
 = ¶ .¶…¶�������…�
�� K� = �¶ �⁄ �3


! K� = ¶
� K
!�,   

 (2.6a) 

And, for  � ≥ @ 

  K
 = ¶ .¶…
  ÷}��b)%��������…�%��� ��%��  .  �%��…�
!%�÷}��b)%� K� 

 = ¶3
% ! �ç%3³ç�3³ç K� = �¶ �⁄ �3

% ! %3³ç K� =  K
!% �¶ �⁄ �ç
%! K� 

  = K
!%K%  .       
  (2.6b) 

The condition ∑  K
 = 1P
{�  gives 

  K�!� = 1 + ∑ �¶ �⁄ �3

! + ∑ �¶ �⁄ �3

% ! %3³ç = ∑ �¶ �3⁄ �
!%!�
{�P
{%%!�
{� +
%ç
% ! ∑ m ¶%�n
P
{% . 
For existence of steady state solutions, the series ∑ m ¶%�n
P
{%  must converge, 

and for this happen the utilization factor ê = ¹ @�⁄  must be than 1. Then 

  K�!� = 1 + ∑ �¶ �⁄ �3

! + �¶ �⁄ �ç

% !��!¶ %�⁄ � %!�
{� .    

  (2.7) 

Thus the distribution of N, when ê = ¹ @�⁄ < 6 is given by (2.6), where K� is 
given by (2.7). 

0 1 2 
s-1 s s+1 
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Note : 

 1. The solutions K
 satisfy the following recurrence relations 

  K
 = �

 m¶

�n
 K
!�,                                          � = 1, 2, … . , @ − 1 

  = �
% m¶

�n
 K
!� = êK
!�,                       � = @, @ + 1, …. 
For � ≤ @, � K
� behave as a Poisson distribution and for � > @ as a geometric 
distribution [when n is finite.] 

2. The probability that as arriving unit has to wait is given by 

  »(@,  ¹ �⁄ ) = Pr�" ≥ @� = ∑ K
P
{%  

     = (¶ �⁄ )ç% !(�!U) K� = ~ç�!U
. 

This is known as Erlang’s second (or C) formula. Extensive tables are 
available. 

Particular Cases 

12.2.1 V/V/1 V<;9A 
          By putting @ = 1, we get from  previuos model equation (2.7) and (2.8b) 

  K� = 1 − ê = 1 −  ¹ �⁄  

  K� = êK�,     K� = ê�K� , … .,  
  K
 = ê
(1 − ê), � = 0, 1, 1, … 

The distribution of the number in the system  N is geometric. 

12.3M/M/∞ Model 

         Letting @ → ∞, we get from (2.7) and (2.8a), 

  K� = 9! ¶ �⁄ ,      K� = ( ¹ �⁄ )K�,           K� = �
� ( ¹ �⁄ )�K�, ..  

  K
 = (¶ �⁄ )3

! 9! ¶ �⁄ ,      � = 0, 1, 2, …  

       The distribution of N is Poisson with parameter  ¹ �⁄ . 
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12. 4  Model  M/M/s/s:   Loss Model  (Due to Erlang) 

 This model envisages that a unit, who finds, on arrival, that all the s – 
channels are busy, leaves the system without waiting for service. This is called 
a (s - channel) loss system and was first investigated by Erlang. This model 
was also examined earlier (see Example 5(d) and 5(g), Ch.3). 

       For this birth and death process, we have 

  ¹
 = ¹,        �
 = ��, � = 0, 1, 2, … @ − 1   
  (2.9) 

  ¹
 = 0,        �
 = @�, � ≥ @.     
  (2.10) 

The state transition – rate diagram is given in Fig. 10.3 

 ¹ ¹   ¹  ¹  ¹ 

               …. 

 

�           2�  (@ − 2)� (@ − 1)�  @�
  

 Fig. 10. 1 State  transition – rate diagram for  M/M/s/s   model 

From (2.3) and (2.4) we get the steady state probabilities 

   K
 = (¶ �⁄ )3

! K�,        � = 0, 1, … , @ 

And    �1 + ∑ (¶ �⁄ )�T !%T{� �  K� = 1 <? K� = r∑ (¶ �⁄ )�T !%T{� s!� . 
Thus   K
 = (¶ �⁄ )3 
 !⁄

∑ (´ ü⁄ )�� !ç��|
 , � = 0, 1, 2, . . , @. 

The probability that an arriving unit is lost to the system (which is the same as 
that an arrival finds that all the channels are busy and leaves the system or is 
lost) is given by 

   K
 = (¶ �⁄ )3 
 !⁄∑ (¶ �⁄ )� T !⁄ç��|  

   = }ç % !⁄∑ }� T !⁄ç��| (K>��6�Ç : 7<? ¹ �⁄ ) 

0 1 2 
s-2 s-1 s 
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The formula (2.12) is known as Erlang’s loss formula or blocking formula and 
is denoted by �(@, :), while (2.11) is known as Erlang’s first formula (or 
simply Erlang’s formula, the corresponding distribution being truncated 
Poisson). 

 

Note :  

 1 Attempts have been made since Erlang’s time to generalize Erlang’s results. 
Mention may be made of the works of Pollaczek, Palm, Kosten, Fortet, Sevast’ 
yanov and Takacs. It has been shown that Erlang’s formula (2.11) holds for 
any distribution of service time (having mean 1 �⁄ ) provided the input is 
Poisson (with parameter ¹), i. e. it holds for the model M/ G/s/s (loss system). 

2. See also Example 5(d) Ch. 3. 
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UNIT XIII NON – MARKOVIAN 
QUEUING MODELS 

13.1 Introduction 

13.2 M/G/1 queue 

13.3 Pollaczek – Khinchine  formula  

13.4 GI/M/1  Model 

13.1 Introduction 

So long we have been discussing queuing processes which are either birth and 
death or non – birth and death processes. They are in either case Markovian 
and the theory of Markov chain and processes could be applied in their studies. 
We shall now consider models where the distributions of the inter-arrival time 
or the service this do not possess the memory-less property, i.e. are not 
exponential. The process �"(�)� giving the state of the system or system size 
at time t will then be no longer Markovian; however, the analysis of the 
process can be based on an associated process which is Markovian. Two 
techniques are generally being used for this purpose. Kendall (1951) use the 
concept of regeneration point (due to Palm) by suitable choice of regeneration 
points and extracts, from the process �"(�)�, Markov chain in discrete time at 
those points. This is known as the technique of imbedded Markov chains. The 
second important technique due to Cox(1955) (see also Keilson and Kooharian 
(1960)) and known as supplementary variable technique, involves inclusion of 
such variable(s). 

         We discussed below Kendall’s method. 

13.2 Queues with Poisson Input: Model  M/G/1 

        Assume that the input process is Poisson with intensity ¹ and that the 
service times are i. i. d. random variables having an arbitrary distribution with 
mean 1 �⁄ . Denote the service time by ¡, its d. f., by �(�), its p. d. f., when it 

exists, by d(�)L= �£(�)M, and its L.T. by 

   �∗(@) = Ì 9!%�;�(�).P�  

Let �
 , � = 1, 2, . . , (�
 = 0) be the ��� departure epoch, i.e. the instant at 
which the ��� unit completes his service and leaves the system. These points 
�
 are the regeneration points of the process  �"(�)�. The sequence of points 
��
� forms a renewal process. "(�
 + 0), the number in the system 
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immediately after the ��� departure has a denumerable state space �0, 1, 2, . . �, 
Write "(�
 + 0) ≡ 	
, � = 0, 1, .. and denote by ̧ 
 , the random variable 
giving the number of units that arrive during the service time of the ��� unit. 

 

Then  	
H� = 	
 − 1 + ¸
H�,                                               67 	
 ≥ 1
  

  = ¸
H�,                                                                           67 	
 = 0 
  (3.1) 

Now the service times of all the units have the same distribution so that 

   ¸
 ≡ ¸ 7<?  � = 1, 2, . . Æ9 ℎ:¡9 

   Pr� ¸ = ? |  @9?¡6=9 �6�9 <7 : >�6� 6@ �� = ²³´µ�¶��¾
) !  

And so   e) ≡ Pr �¸ = ?� Ì ²³´µ�¶��¾
) !  ;d���,         ? = 0, 1, 2, …P�

  (3.2) 

gives the distribution of A, the number of arrivals during the service time of a 
unit. The probabilities 

   K$J = (?�	
H� = I | 	
 = 6� 
Are given by  

K$J = eJ!$H�,                                       6 ≥ 1, I ≥ 6 − 1 

    = 0,                                        6 ≥ 1, I < 6 − 1 
  (3.3) 

   KbJ ≡ K$J = eJ ,                                  I ≥ 0. 
The relations (3.3) clearly indicate that �	
, � ≥ 0� is a Markov chain having 
t. p. m. 

    ( = LK$JM =
YZ
Z[ e�e�e�    …e�e�e�    …0       e�e�    ……             …     ……             …     …_̀

à
  

  (3.4) 

As every state can be reached from every other state, the Markov chain ��
� is 
irreducible. Again as K$$ ≥ 0, the chain is aperiodic. It can also be shown that, 
when the traffic intensity ê = 1 �⁄ < 1, the chain is persistent, non – null and 
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hence ergodic. We can then apply the ergodic theorem of Markov chain 
(Theorem 2.11). 

13. 3. Pollaczek – Khinchine Formula 

The  limiting probabilities 

   ¡J = A6�
→PK$J(
),    I = 0, 1, 2, .. 
Exist and are independent of the initial state i. The probabilities ¡ =(¡�, ¡�, . . ), ∑¡J = 1,are gives as the unique solutions of 

   ¢ = ¢(. 
Let T(@) = ∑eJ@J  :�; ¢(@) = ∑¡J@J denote the p. g. f. of the distributions of 

*eJ4:�; �¡J� respectively. 

We have  T(@) = ∑ eJ@J =PJ{� ∑ @JPJ{� �Ì ²³´µ(¶�)�J !  ;d(�)P� � 
     = Ì 9(!¶!¶%)  � ;�(�)P�  

      = �∗(¹ − ¹@).   
  (3.5) 

Hence    Ã(¸) = T£(1) = −¹�∗(�)(0) = 1 �⁄ = ê. 
  (3.6) 

Now ¢ = ¢( gives an infinite system of equations. Multiplying the (e + 1)@� 
equation by @T , e = 0, 1, … and adding over e, we get, on simplification, for 
0 < ê < 1, 
   ¢(@) = *�!]¨(�)4(�!%) ](%)

](%)!%    (see 

Example 8, Ch. 2) 

Putting T£(1) = ê we get 

   ¢(@) = (�!U) (�!%) ](%)
](%)!%      

  (3.7) 

    = (�!U) (�!%)H∗(¶!¶%)
H∗(¶!¶%)!%  

This is known as Pollaczee∗ - Khinchine (P. K.) formula. 
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13. 3. 1 Busy Period 

The expected duration of the busy period T follows immediately from the 
result noted in Example 10(a), For ê < 1, we have 

   K� = A6�
→P�"(�) = 0� = %(^)
%(^)H%(Ö) . 

Clearly, the idle period Û here is exponential with mean 1 ¹,⁄  since the inter-
arrival distribution is so. As stated in the remarks noted earlier in this section, 
K
 = ¡
 for all n. From equation (3.7) we find that ¡�, the constant term in 
¢(@), is given by ¡� = 1 − ê, so that 

   K� = 1 − ê = � ¶⁄� ¶⁄ H%(Ö) 
Whence  Ã(�) = ��!¶ = %(§)�!U

, (v being the service time). 

  (3.8) 

Note that Ã(�) for an M/G/1 queue has the same form as that for an M/M/1 
queue. 

Thus, given the mean arrival and service rates, the expected duration of a busy 
period in a queue with Poisson input is independent of the form of the 
distribution of the service time. 

13. 4 GI/M/1  -Model  

Here we assume that the service time distribution is exponential with mean 1 �⁄  and that the inter – arrival time is a random variable u, having an arbitrary 
distribution with mean 1 ¹.⁄  Denote the d. f. of u by ̧(�) and its p. d. f., when 
it exists, by :(�); its L. T. is given by 

    ¸∗(@) = Ì 9!%�;¸(�)P�    

   (4.1) 

So that    ¸∗(T)(0) ≡ Õ�Õ%� ¸∗(@) |%{� = (−1)T Ã(>T) 
   (4.2) 

And for e = 1, ¸∗(�)(0) = −1 ¹.⁄  

   Let �
, � = 1, 2, … , (�� = 0) be the epoch at which the ��� arrival occurs. 
The process "(�
 − 0) = S
, � = 0, 1, 2, … gives the number in the system 

immediately before the arrival of the ��� >�6�. Then 

   S
H� = S
 + 1 − �
H�, 67  S
 ≥ 0, �
H� ≤ S
H�, 
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Where �
H� is the number of units served during (�
H� − �
), 6. 9. the inter-
arrival time between the ��� and (� + 1)@� unit. As �
 is independent of n, 
i.e. �
 for all n, its distribution is given by 

   Ç) = Pr�� = ?� = Ì ²³ü¾(��)¾) !
P�  ;¸(�), ? = 0, 1, 2, …

   (4.3) 

13. 4. 1 Steady State Distribution 

The arrival point conditional probabilities  

   K$J = Pr�S
H� = I |S
 = 6� 
Are given by   

   K$J = Ç$H)!J, 6 + 1 ≥ I ≥ 1, 6 ≥ 0   

   (4.4) 

   = 0, 6 + 1 < I, 
And    ∑  K$J = 1.$H�J{�  

Thus    K$� = 1 − ∑  K$J = 1 − ∑ Ç$H)!J$H�J{�$H�${�  

   = 1 − ∑ Ç) = ℎ$$){� (@:Î), 6 ≥ 0.   
  (4.5) 

Since all K$J′@  depend only on 6 :�; I, �S
, � ≥ 0� is a Markov chain having 

t. p. m. 

   ( = LK$JM =
YZ
ZZ
[ ℎ�Ç�     0       0     0    …ℎ�Ç�Ç�     0     0    …ℎ�Ç�Ç�Ç�    0    ……               …                    ……               …                    …_̀

`̀
a
  

  (4.6) 

As Ç) > 0, the chain is irreducible and aperiodic. It can also be shown that it is 
ergodic, persistent non – null when ê < 1. Thus, when  ê < 1, 6. 9. in the 
ergodic case, the limiting arrival point system size probabilities 

   ¡J = A6�
→P($J(
)  

Exist and are given as the unique solution of the system of equations 

   ¢ = ¢(,      
  (4.7) 
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Where   ¢ = (¡�, ¡�, . . ),    ∑¡J = 1. 
We now proceed to find V. 

Let ï(@) = ∑ Ç)@)P){�  be the p. g. f. of �Ç)�, 6. 9. of the r. v. B, the number of 
units served during an  inter – arrival interval. We have 

   ï(@) = ∑ Ç)@)P){�  

    = ∑ @) Ì ²³üµ(��)¾) !
P�  ;¸(�)P){�   

    = Ì 9!�(�!%)�P�  ;¸(�)  

    = ¸∗L�(1 − @)M. 
Also   Ã(�) = ï£(1) − �¸∗(�) (0) 
The equations (4.7) can be written as 

   ¡� = ∑ ¡)ℎ)P){�      
  (4.8) 

   ¡J = ∑ ¡)HJ!�Ç)P){� , I ≥ 1.    

  (4.9) 

Denoting the displacement operator by Ã(@< Ã)(¡T) = ¡TH)  9�=. ),  we can 
write (4.9) as a difference equation 

   ÃL¡J!�M = ¡J = ∑ Ç)Ã)L¡J!�M,     I ≥ 1P){�  

Or,   �Ã − ∑ Ç)Ã)P){� �L¡J!�M = 0 

Or,   �Ã − ï(Ã)�¡J!� = 0,       I − 1 ≥ 1. 
This equation can be solved by the method given in Appendix Sec. A. 2. The 
characteristic equation of the difference equation is 

   ?(�) = � − ï(�) ≡ � − ¸∗(� − ��) = 0. 
It can be shown that when ï£(1) = 1 ê⁄ > 1, 6. 9.  ê < 1, ?(�) has only one 
zero inside |�| = 1. Assume that ê < 1, then, if the root of ?��� =0 6�@6;9 |�| = 1 is denoted by  ?� and the roots on and outside |�| = 1 are 
denoted by@�, @�, @�, … then the solution of (4.10) is 

   ¡J = »�?�J + ∑ �$@$J ,      I ≥ 0.$  

Where »�,  �$ are constants. 
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But since ∑ ¡J = 1,   �$ = 0$ for all 6. Thus, when ê < 1, we get,  ¡J =
»�?�J , I ≥ 0 :�; 7?<�   

∑ ¡J = 1,PJ{�  we get  »� = 1 − ?�, so that 

    ¡J = (1 − ?�)?�J , I ≥ 0.  
The steady – state arrival point system size has a geometric  distribution with 
mean ?� (1 − ?�),   ?�⁄  being the unique root of ?(�) = 0 lying inside |�| = 1. 
Remark: 

We take as regeneration points the arrival epochs in case of GI/M/1 model and 
departure epochs in case of M/G/1 model. The queuing processes occurring in 
the two models M/G/1 and GI/M/1 are non Markovian; however by extracting 
processes at these regeneration points, it has been possible to obtain Markov 
chains from those processes. The embedded Markov chains indicate system 
stateat regeneration points. What one needs also is the distribution of general 
time system state. 

        Let us now consider the queuing process of GI/M/1, having for its 
embedded Markov chain �S
�, where S
 in the system size immediately prior 

of �Ï� arrival. We have obtained *¡J4, the limit distribution of �S
�. Define 

#(�) = S
, �
 ≤ � ≤ �
H�. Then �#(�)�, Xℎ9?9 #(�) gives the system size at 
the most recent arrival, is a semi – Markov process having �S
� for its 
embedded Markov chain. �S
, �
� is an irreducible Markov renewal process. 

Let "(�) denote the system size at an arbitrary time t. Denote 

  7$J(�) = Pr�#(�) = I |  #�0� = 6� 
  K$J��� = Pr�"��� = I |  #�0� = 6�; 
The 7J = A6��→P7$J���gives the limiting probability that the system size of the @ − V. (. #��� 6@ I, whereas  KJ = lim  K$J ��� :@ → ∞, gives the limiting 

probability that the system size of the general time process "��� 6@ I. 
We have to look for relationship, if any, existing between the three limit 

distributions *¡J4, , *7J4and *KJ4. 
From theorem 7.1, we find that ¡J  :�; 7J are related as follows: 
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   7J = §�]�∑ §Ð]ÐÐ ,      

  (4.12) 

Where V$ is the expected time spent in the state I during each visit. 

The transitions, in case of this model, occur at the arrival points which are its 
regeneration points. Thus V$ , the expected time spent in a state I during each 
visit is the expected inter-arrival time. IN other words, V$ = 1/¹ for all i. 
Putting the value of V$ in (4.13), we get 

   7J = §�  /¶∑ §Ð  /¶Ð = §�∑ §ÐÐ = ¡J    7<? :AA I,   

  

   = (1 − ?�)?�J (from  (4.11)). 

In order to obtain KJ in terms of 7J(:�; �9?�@ <7 ¡J)we have to make use of 

the relationship between 7J  :�; KJ . 

It is shown that for this particular model, 

   KJ = (¹ �⁄ ) 7J/?�, 
   = (¹ �⁄ )(1 − ?�)?�J!� = ê¡J!�, I ≥ 1 

And    K� = 1 − ¹ �⁄ . 
We get    

   Mean = ê (1 − ?�)⁄  and variance = ê(1 − ê + ?�) (1 − ?�)�⁄  .  
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UNIT – XIV Non -Birth -Death   Queuing 
Processes :Bulk Queues: 

 

14.1 THER6/`/: QUEUE: 

14.2 The state Probabilities 

14. 3.  The Waiting – Time Probabilities 

14.4.Alternative algorithm 

14.5 The R6/`/a Queue 

4.6  TheR6/b/a queue 

 

14.1 THE R6/`/: QUEUE: 

A useful model is the single – server R6/`/:queue where batches of 
customers arrive according to a Poisson process  with  rate  ¹ and the batch 
size X has a discrete probability distribution �-J , I = 1, 2, . . � with finite 

mean -. The customers are served  individually by a single server. The service 
times of the customers are independent random variables with a common 
probability distribution function �(�). Denoting by the random variable S the 
service time of a customer, it is assumed that the server utilization ê defined 
by 

   ê = ¹-Ã(@) 
Is smaller than 1. The analysis for the V/ï/1 queue can be extended to the 
R6/`/: queue. In  section 9. 3. 1 we give an algorithm for the state 
probabilities. The computation of the waiting – time probabilities is discussed  
in  section 9. 3. 2. 

14. 2 The State Probabilities 

The stochastic process ��(�), � ≥ 0� describing the number of customers in 
the system is regenerative. The process regenerates itself each time an arriving 
batch finds the system empty. The cycle length has a continuous distribution 

with finite mean. Thus the process ��(�)� has a limiting distribution *KJ4. The 

probability KJ can be interpreted as the long – run fraction of time that j 
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customers are in the system. The probability K� allows for the explicit 
expression 

   K� = 1 − ê. 
To see this, we apply the ‘ reward principle’ that was used in section 2.3 to 
obtain  Little’s formula. Assume that the system earn a reward at rate 1 
whenever a customer is in service. Then the average reward per time unit 
represents the fraction of time that the server is busy. The long – run average 
reward earned per customer is equal to Ã(@), while the long – run average 
arrival rate of customers is ¹-. Hence the long – run average reward earned 
per time unit equals ¹- Ã(@). The long – run fraction of time that the server is 
busy equals 1 − K�. This shows that 1 − K� = ¹- Ã(@) = ê.A recursion 
scheme for theKJ is given in the following theorem. 

Theorem 14. 3   

The state probabilities  KJ satisfy the recursion 

  KJ = ¹K� ∑ -%:J!%J%{� + ¹∑ L∑ K$T${� ∑ -%%FT!$ M:J!%,    I −JT{�1, 2,…, 
 

Where   

  :
 = Ì ?
(�)�1 − �(�)�;�,     � = 0, 1, …P�  

with  ?
(�) = ({  a total of n customers will arrive in (0, t)  } . 

Proof:The proof is along the same lines as the proof of Theorem 9. 2. 1. The 
only modification is with respect  to  the up – and down-crossing relation  (9. 
2. 1). We now use the following up – and down – crossing argument : the 
number of down – crossings from a state in the set �e + 1, e + 2, … � to a state 
outside this during one cycle equals the number of up-crossings from a state 
outside the set  �e + 1, e + 2, … � to a state in this set during one cycle. Thus 
relation (9.2.5) generalize to 

  Ã("T) = ∑ Ã(�$)¹ ∑ -%%FT!$ ,   e = 0, 1, …T${�  

The remainder of the proof is analogous to the proof of Theorem 9. 2. 1. 

The recursion scheme (9. 3. 2) is not as easy to apply as the recursion scheme 
(9. 2. 1). The reason is that the computation of the constants :
 is quite burden 
-some. In general, numerical integration must be used, where each function 
evaluation in the integration  procedure requires an application of Adelson’s 
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recursion scheme for the computation of the compound Poisson probabilities ?
(�), � ≥ 0; 
      The best general – purpose approach for the computation of the state 
probabilities is the discrete FFT method. An explicit expression for the 
generating function 

  ((�) = ∑ KJ�J ,       |�| ≤ 1PJ{�  

Can be given. It is a matter of tedious algebra to derive from ((9. 3. 2)) that 

  (��� = �1 − ê� �!¶D���  ��!c�����!¶D���  ��!c���� ��!��⁄
,   

  (9. 3. 3) 

Where 

  ï��� = ∑ -J�JPJ{�  :�; +��� = Ì 9!¶ ��!c����� �1 − �����;�.P�
   

The derivation uses that 9!¶ ��!c����� is the generating function of the 
compound Poisson probabilities  ?
���; see Theorem 1. 2.1. Moreover, the 
derivation uses that the generating function of the convolution of two discrete 
probability distributions is the product of the generating functions of the two 
probabilities distributions. The other  details of the derivation of (9. 3. 3) are 
left to the reader. For constant and phase-type services, no numerical 
integration is required to evaluate the function +��� in the discrete FFT 
method. 

Asymptotic expansion: 

The state probabilities allow for an asymptotic expansion when it is assumed 
that the batch-size distribution and the service-time distribution are not heavy-
tailed. Let us make the following assumption. 

Assumption 14. 3. 1 

(a) The  convergence radius� of ï��� = ∑ -J�JPJ{�  is larger than 1. Moreover, Ì 9%��1 − �����;� < ∞P� for some @ > 0. 
(b) A6�%→H Ì 9%��1 − �����;� = ∞P� ,  where B is the supremum over all s 

with  

  Ì 9%��1 − �����;�] < ∞P� . 
(c) A6�Å→d|ï�0� = 1 + �/¹ for some number �� X6�ℎ 1 < �� ≤ �. 
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Under this assumption we obtain from Theorem C. 1 in Appendix C that 

  KJ~� �J  :@ I → ∞,      

  (9. 3.4) 

Where � is the unique solution to the equation 

  ¹+(�)�1 − ï(�)� = 1 − �     
  (9. 3. 5) 

On  (1, ��) and the constant � is given by 

  � = (1 − ê)(1 − �) r¹+£(�)�1 − ï(�)� − (�!1)c¨(1)�!c(1) + 1s!�.
   (9. 3. 6) 

A formula for the average queue size 

 The long – run average number of customers in queue is �� =∑ (I − 1)KJ .PJ{�  Using the relation (£(1) = ∑ IKJ ,PJ{�  we obtain after some 

algebra from (9. 3. 3) that 

  �� = �
� (1 + =f

�) U1
�!U

+ U�(�!U) r%Ly1M
%(y) − 1s, 

Where X denotes the batch size. Note that the first part the expression for �� 

gives the average size in the standard  M/G/1 queue, while the second part 
reflects the additional effect of the batch size. The formula for �� implies 

directly a formula for the long – run average delay in queue per customer. By 
Little’s formula �� = ¹-Æ� . 
14. 3.  The Waiting – Time Probabilities 

The concept of waiting distribution is more subtle for the case of batch arrivals 
than for the case of single arrivals. Let us assume that customers from each 
arrival group are numbered as 1, 2,… Service to customers from the same 
arrival group is given in the order in which those customers are numbered. For 
customers from different batches the service is in order of arrival. Define the 
random variable �
 as  the delay in queue of the customer who receives the 
��� service. In the batch – arrival queue, A6�
→P(��
 ≤ 0� need not exist. To 
see this, consider the particular case of a constant batch size of 2. Then 
(��
 > 0� = 1 for n even and (��
 > 0� < 1 for n odd. The limit 

  Æ�(0) = A6�
→P �

∑ (��T ≤ 0�
T{� ,          0 ≥ 0 
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Always exists. To see this, fix x and imagine that a reward of 1 is earned for 
each customer whose delay in queue is no more than x. Using renewal – 
reward theory, it can be shown that the limit Æ�(0) exists and represents the 

long – run fraction of customers whose delay in queue is no more than x. If  
the batch size distribution is non – arithmetic, then A6�
→P(��
 ≤ 0�exists 
and equals Æ�(0). 
Denote by   

  d∗(@) = Ì 9!%Åd(0);0P�  

The Laplace transform of the probability density d(0) of the service time of a 
customer. Let -fë∗ (@) be the Laplace transform of the probability density of the 
total time needed to serve all customers from one batch. It is left to the reader 
to verify that 

  -fë∗ (@) = ∑ -T�d∗(@)ºTPT{� = ïLd∗(@)M. 
The following result now holds: 

  Ì 9!%Å�1 −Æ�(0)�;0P� = �! ghi∗ (%)g¾∗(%)%  ,   

  (9. 3. 7) 

Where 

  Æfë(@∗) = (�!U)%%!¶H¶0hi∗ (%)    :�;      Æ)∗(@) = �!c(�∗(%))
0��!�∗(%)º 

With - = ∑ e-TPT{�  denoting the average batch size. The waiting – time 
probabilities Æ�(0) can be numerically obtained from (9. 3. 7) by using 

numerical Laplace inversion . 

 We give only a heuristic sketch of the oroof of (9. 3. 7). A rigorous 
treatment is given in Van Ommeren (1988). An essential part of the proof is 
the following result. For e = 1, 2, …, let 

je = the long – run fraction of customers taking the e�� position in their 
batch. 

Then it holds that 

   je = �
0∑ -JPJ{T ,           e = 1, 2, ….   

  (9. 3. 8) 

To prove this result, fix k and imagine that a reward of 1 is earned for each 
customer taking the e�� position in its batch. Then the long – run average 
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reward per customer is je by definition. By the renewal – reward theorem, the 
long –run average reward per customer equals the expected reward ∑ -JPJ{T earned for a single batch divided by the expected batch size -. This 

gives (9. 3. 8). Consider now a test customer belonging to a batch that arrives 

when the system has reached steady state. Denote by �(P) the delay in queue 

of this test customer. The delay �(P) can be written as �(P) = 	� + 	�, where 
	� is the delay caused by the customers present just before the batch of the test 
customer arrives and 	� is the delay caused by customers belonging to the 
batch of the test customer. The random variables 	� :�; 	� are independent 

of each other and so Ã m9!%	(k)n = Ã(9!%y|)Ã(9!%y/), Assuming that the 

position of the test customer in the batch is distributed  according to �je�, we 
have by (9. 3. 8) that 

  Ã(9!%y/) = ∑ jePT{� �d∗(@)ºT!� = �
0∑ �d∗(@)ºT!�PT{� ∑ -JPJ{T  

   = �
0 ∑ -J ∑ �d∗(@)ºT!�PT{� =  �!c(�∗(%))

0��!�∗(%)º  .PJ{T  

To find Ã(9!%y|), note that an arriving group of customers can be considered 
as a singly arriving super-customer. The probability density of the total time. 
The probability density of the total time to serve a super – customer has the 
Laplace transform -fë∗ (@). In other words, the delay in queue of the first 
customer of each batch can be described by a standard M/G/1 queue for which 
the service – time density has the Laplace transform -fë∗ (@). Thus, using the 
result  for the M/G/1 queue. 

  Ã(9!%y|) = (�!U)%%!¶H¶0hi∗ (%) . 
Since Ì 9!%Å*1 − Æ�(0)4;0 = @!� r1 − Ã m9!%	(k)nsP�  by relation in 

Appendix E, we have now derived (9. 3. 7) heuristically. 

14.4.Alternative algorithm: 

            A simpler algorithm than numerical Laplace inversion can be given for 
the Vy/�/1 queue with deterministic services, This alternative algorithm is 
discussed in Section 9. 5. 3 in the more general context of the Vy/�/1 queue. 
A simple algorithm is also possible when the service time of a customer is a 
mixture of Erlangian distributions with the same scale parameters. In this case 
the service time of a customer can be interpreted as a random sum of 
independent phases each having an exponentially distributed length with the 
same mean. The Vy/ï/1 queue with generalized Erlangian services is in fact 
an Vl/V/1 queue in which the batch size Y is distributed as the total number 
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of service phases generated by all customers in one batch. For this particular Vy/ï/1 queue the waiting -  time probabilities Æ�(0) can be computed by a 

modification of the algorithm gives in Example 5. 5. 1. 

Approximations for the waiting – time probabilities 

Suppose that  Assumption 9. 3. 1 is satisfied and let d(�) denote the density of 
the service – time distribution function �(�). Then the following asymptotic 
expansion applies: 

    : −Æ�(0) ~ Ô9!�Å  :@ 0 → ∞, 
Where � is the smallest positive solution to 

    ∑ -J*Ì 9��P�  d(�);�4J = 1 + �¶PJ{�  

And the constant Ô is given by  

  

 Ô = (�!U)�¶0
r1 − ¹ Ì 9��P�  d(�);� ∑ I-J*Ì 9��P�  d(�);�4J!�PJ{� s!� 

   6": − Ì 9��P�  d(�);�#!:. 
14.5 The R6/`/a Queue 

In the Vy/ï/= queue the customers arrive in batches rather than singly. The 
arrival process of batches is a Poisson process with rate ¹. The batch size has a 
probability distribution �-J, I = 1, 2, . . � with finite mean -. The service times 

of the customers are independent of each other and have a general distribution 
with mean Ã(@). There are c identical servers. It is assumed that the server 
utilization ê, defined by 

   ê = ¶0%(%)� , 
Is smaller than 1. The customers from different batches are served in order of 
arrival and customers from the same batch are served in the same order as their 
positions in the batch. A computationally tractable analysis can only be given 
for the special cases of exponential services and deterministic services. We 
first analyse these two special cases. Next we discuss a two – moment 
approximation for the general Vy/ï/= queue. 
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14.5.1 The R6/R/a queue 

        The process ��(�)� describing the number of customers present is a 
continuous – time Markov chain. Equating the rate at which the process leaves 
the set of states �6, 6 + 1, . . � to the rate at which process this set of states, we 
find for the state probabilities KJ the recursion scheme 

   min(6, =) �K$ = ∑ KT¹  ∑ -%,   6 = 1, 2, …%�$!T$!�T{�  
 (9. 6. 32) 

Where � = �
%(f), Starting with K� ∶= 1, we successively compute K�, K�, .. and 

next obtain desired K$ by normalization. The normalization can be based on 
Little’s relation 

   ∑ IKJ�!�J{� + =L1 − ∑ KJ�!�J{� M = =ê   

 (9. 6.33) 

Stating that the average number of busy servers equals =ê. The computational 
effort of the recursion scheme can be reduced by using the asymptotic 
expansion, 

   KJ  ~ ��!J  :@ I → ∞,     

 (9. 6. 34) 

Where � is the unique solution of the equation 

   ¹��1 − -(�)º = =�(1 − �)    
 (9. 6. 35) 

On the interval (1, �) and the constant � is given by 

   � = (1!�)∑ (�!$)~Ð1Ð/�m³/Ð�|�!¶110¨(1)/(��)  .    

 (9. 6. 36) 

Here -(�) = ∑ -J�JPJ{�  and R is the convergence radius of the power series -(�). To establish the asymptotic expansion, it is assumed that � > 1. In other 
words, the batch – size distribution is not heavy – tailed. The derivation of the 
asymptotic expansion (9. 6. 34) is routine. Define the generating function  ((�) = ∑ KJ�J ,PJ{� |�| ≤ 1.It is a matter of simple algebra to derive from (9. 6. 

32) that 

   (��� = �� �⁄ � ∑ ��!$�~Ð�Ðm³/Ð�|�!¶� ��!0���� �����!���⁄  . 
Next, by applying Theorem C.1 in Appendix C, we obtain (9. 6. 34). 
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       From the generating function we also derive after considerable algebra 
that the long – run average queue size is given by 

 �� = ��(�!U)∑ I(= − 6)KJ + U�(�!U) �%Ly1M
%(y) − 1� + U�!U − =ê,�!�${�  

Where the random variable X denotes the batch size. 

Next we discuss the computation of the steady – state probability distribution 
function Æ�(0) of the waiting time of a customer. The function  Æ�(0), is 

defined in the same way as in section 9. 3. 2. To find Æ�(0), we need the 

probabilities 

 �J = the long – run fraction of customers who have j other customers in 

front of them just after arrival , I = 0, 1, … 

The delay in queue of a customer who has I ≥ = other customers in front of 
him just after arrival is the sum of I − = + 1independent exponentials with 
common mean 1 =�⁄ . Hence this conditional waiting time has an ÃJ!�H� 

distribution and so 

  1 − Æ�(0) = ∑ �J ∑ 9!��Å (��Å)�T ! ,   0 ≥ 0.J!�T{�PJ{�  

A computationally better representation for Æ�(0) is 

  1 −Æ�(0) = ∑ 9!��Å (��Å)�T ! L1 − ∑ �JTH�!�J{� M, 0 ≥ 0 .PT{�  

  (9. 6. 37) 

The probabilities �J are easily expressed in terms of the KJ . To do so, let 

  je = �
0∑ -J,    e = 1, 2, …PJ{T  

Then, as shown in Section 9. 3. 2, The probability je gives the long – run 
fraction of customers who take the e�� position in their batch. Since the long – 
run fraction of batches finding m other customers present upon arrival equals 
KN, we find 

  �J = ∑ KNjJ!NH�,    I = 0, 1, …JN{�  

For the case of exponential services this formula can be considerably 
simplified. Using the recursion relation (9. 6. 32), we have 

  �J = �¶0 min(I + 1, =)KJH�,    I = 0, 1, … .   

  (9. 6. 38) 
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This completes the specification of the exact algorithm (9. 6. 37) for the 
computation of the waiting – time probabilities Æ�(0). The computational 

effort can further be reduced by using an asymptotic expansion for 1 −Æ�(0). 
Inserting (9. 6. 34) and (9. 6. 38) into (9. 6. 37), we find after some algebra 
that 

  1 −Æ�(0) ~  �1³m
1!� 9!��m�!/

nnÅ     :@ 0 → ∞,   

  (9. 6. 39) 

Where � :�; � are given by (9. 6. 35) and (9. 6. 36). 

14.6 The R6/b/a queue 

 Suppose that the service time of each customer is a constant D. 
Denoting by KJ(�) the probability that j customers are present at time t, we 

find by the same arguments as used in Section 9. 6. 2 that 

 

 KJ(� + �) = ∑ KT(�) ?J(�) + ∑ KT(�)�HJT{�H��T{�  ?J!TH�(�),         I =
0, 1, … 

Where the compound Poisson  probability  ?J(�) is defined by 

 ?J(�) = the probability that exactly j customers arrive during a given time 

interval of length D,   I = 0, 1, … 

Letting � → ∞, we find the system of linear equations 

  KJ =  ?J(�) ∑ KT + ∑  ?J!TH�(�)KT ,            I = 0, 1, …�HJT{�H��T{�
   (9. 6. 40) 

Together with the normalizing equation ∑ KJ = 1.PJ{�   Just as in the M/D/c 

case, this infinite system of equations by using the geometric tail behavior of 
the KJ . It holds that 

  KJ  ~ ��!J      :@     I → ∞,      

  (9. 6. 41) 

Where � is the unique root of the equation 

  ��9¶	��!0(1)� = 1      
  (9. 6. 42) 

On the interval (1, R) and the constant � is given by 
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  � = �= − ¹��-£ (�)º!� ∑ KJL�J − ��M.�!�J{�    

  (9. 6. 43) 

As before ,-(�) =  ∑ -J�JPJ{�    and the number � denotes the convergence 

radius of power series  -(�). 
It is assumed that  � > 1. 
 In general however , it is computationally simpler to compute the state 
probabilities KJ by applying the discrete FFT method to the generating 

function ((�) = ∑ KJ�J .PJ{�  In the same way as (9. 6. 6) we derived, we obtain 

    ((�) = ∑ ~�L��!�mM.m³/��|�!�m²´o�/³p(q)� ,   

   (9. 6. 44) 

Since the generating function of the compound Poisson probabilities ?J(�) is 

given by 9¶	��!0(�)�;  Before the discrete FFT method can be applied, the 
unknown probabilities K�, … . . K�!� must be removed from (9. 6. 44). To do so, 
we proceed in the same way as in Section 9. 6. 1 and rewrite ((�) in the 
explicit form  

    ((�) = �(�!U)(�!�)�!�m²´o�/³p(q)� ∏ m�!�T
�!�Tn�!�T{� ,  

  (9. 6. 45) 

Where �� = 1, �� , … , ��!� are the c distinct roots of ��9¶	��!0(�)� = 1 inside 
or on the unit circle. The computation of the roots ��, … . ��!� is discussed in 
Appendix G. The asymptotic expansion (9. 6. 41) follows from the generating 
function (9. 6. 44) and Theorem C. 1 in Appendix C. Also, we obtain after 
considerable algebra from (9. 6. 44) that the long – run average size is given 
by 

 �� = �
��(�!U) r(=ê)� − =(= − 1) + ∑ �=(= − 1) − I(I − 1)�KJ +�!�J{�

=êÃ	2Ã	−1 , 
Where the random variable X denotes the batch size. This relation can be used 
as an accuracy check on the calculated values of the probabilities KJ . 
Waiting – time probabilities in the R6/b/a queue    

 In the batch – arrival R6/b/a  queue, the waiting – time probability 
Æ�(0) is defined as the long – run fraction of customers whose time in queue 

is no more than 0, 0 ≥ 0, The expression (9. 6. 9) for Æ�(0) in the M/D/c 



 

153 

 

queue can be extended to the R6/`/aqueue. For any 0 with (e − 1) � ≤ 0 <
e� :�;  e = 1, 2, …, it holds that 

   Æ�(0) = ∑ jNH�T�!�N{� ∑ ^T�!�!N!J?J(e� − 0)T�!�!NJ{�
   (9. 6. 46) 

Where ̂ J = ∑ K$  7<?  I = 0, 1, …T�!�N{�  and the probability  j) is defined by 

   j) = �
0∑ -JPJ{) ,       ? = 1, 2, …. 

This result is due to Franx (2002). Its proof will be omitted . The asymptotic 
expansion 

   1 − Æ�(0) ~ Ô 9!¶�0(1)!�ºÅ     :@ 0 → ∞  

  (9. 6. 47) 

Holds with 

   Ô = ��0(1)!�º(1!�)1 1m³/ 0, 
 

Where � :�; � are given by (9. 6. 42) and (9. 6. 43). This result can be 
derived in a similar way as expansion (9. 6. 11) for the M/D/c queue was 
obtained. 

14.6 TheR6/b/a queue 

    An exact and tractable solution for the Vy/�/=  queue is in general not 
possible except for the special cases of deterministic and exponential services. 
Using the solutions for these special cases, we can useful approximations for 
the general R6/`/a queue. A practically useful approximation to the 
average delay in queue per customer is 

   Æ�}~~ = (1 − =%�)Æ�(;9�) + =%�Æ�(90K),  
Provided that=%� is not too large (@:Î, 0 ≤  =%� ≤ 2) and the traffic load is not 
very small. It was pointed out in Section 9. 3 that the first – order 

approximation 
�� (1 + =%�)Æ�(90K) is not applicable in the batch – arrival 

queue. A two – moment approximation to the percentiles j(() of the waiting – 
time distribution of the delayed customers is provided by 

   j}~~(K) = (1 − =%�)jÕ²�(K) + =%�j²Å~(K),        0 < K <
1. 
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However, it turns out that in the batch – arrival case the two – moment 
approximation to j(K) works only for the higher percentiles. Fortunately, 
higher percentiles are usually the percentiles of interest in practice. Table 14. 
6. 3 gives the Vy/Ã�/= queue the exact and approximate values of the 
conditional waiting – time percentiles j(() both for the case of a constant 
batch size and the case of a geometrically distribution batch size. In both cases 
the mean batch size Ã(	) = 3. The normalization Ã(f) = 1is used for the 
service time. The percentiles j²Å~(K) for exponential service and jÕ²�(K) for 

deterministic services have been computed from the asymptotic expansion (9. 
6. 39) and (9. 6. 47). These asymptotic expansions already apply for moderate 
measure for the traffic load is the probability that all servers are 
simultaneously busy. This probability is by (H = 1 − ∑ KJ .�!�J{�  As a rule of 

thumb, the asymptotic expansions can be for practical purpose for 0 ≥
%(y)%(f)

√�  Xℎ9� (H ≥ 0.2. 
BEST 
WISHES_______________________________________________________
_____________ 
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